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1 Introduction

Let A be a dg-algebra over a field k. Then we have the famous

Theorem 1 (Kaledin [20], [19]). Suppose A is smooth and proper, and char k = 0. Then the
noncommutative Hodge-to-deRham spectral sequence degenerates, so HP•(A) = HH•(A)((u)).

Recently, Efimov [10] disproved the following two potential generalizations of Kaledin’s the-
orem by constructing explicit counterexamples:

Conjecture 1 (Kontsevich). Suppose A is proper, but not necessarily smooth. Then the com-
position

(HH•(A)⊗HC•(Aop))[1]
id⊗δ−−−→ HH•(A)⊗HH•(Aop)→ k,

where the last arrow is the pairing introduced by Shklyarov [27], is zero.

Conjecture 2 (Kontsevich). Suppose A is smooth, but not necessarily proper. Then the com-
position

K0(A⊗Aop) ch−→ (HH•(A)⊗HH•(Aop))0
id⊗δ−−−→ (HH•(A)⊗HC−• (Aop))−1 (1)

vanishes on the class of the diagonal [∆] ∈ K0(A⊗Aop). Here K0 denotes the K-theory of the
triangulated category of perfect A-modules.

Above, δ denotes the Connes operator, reviewed in Section 2.2.1, and ch is the noncommu-
tative Chern character, reviewed in Section 3.2.2.

Symplectic geometry is a source of particularly interesting A∞ categories. Moreover, categor-
ical notions like smoothness and properness have correspond naturally to geometric conditions
on symplectic manifolds. In this paper show that Fukaya categories are very special among A∞
categories; in particular, they satisfy the conjectures of Kontsevich for geometric reasons.

Theorem 2. Assume k has characteristic 2.
Let M be Liouville domain, and let Fuk(M) be the Fukaya category of closed exact La-

grangians in M (see e.g. Seidel [25]) with k coefficients. Then the composition

(HH•(Fuk(M))⊗HC•(Fuk(M)op)[1]
id⊗δ−−−→ HH•(Fuk(M))⊗HH•(Fuk(M)op)→ k, (2)

where the last arrow is the pairing introduced by Shklyarov, is zero.

One geometric incarnation of smoothness in symplectic geometry is encapsulated in the
following

Definition 1. We say that a Liouville domain M is strongly nondegenerate if the diagonal
bimodule is generated (Section 3.2.1) by tensor products of Yoneda modules associated to La-
grangians in M and M−, and moreover M is nondegenerate in the sense of [1].
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Theorem 3. Assume k has characteristic 2.
Let M be a Liouville domain that is strongly nondegenerate. Let WF (M) denote the wrapped

Fukaya category of M with k coefficients; due to the nondegeneracy assumption, WF (M) is
smooth. Let WF (M)−mod−WF (M) denote the A∞ category of (WF (M),WF (M))-bimodules.
Then the composition

K0(WF (M)−mod−WF (M))
K◦ch−−−→ (HH•(WF (M))⊗HH•(WF (M)op))0

id⊗δ−−−→ (HH•(WF (M))⊗HC−• (WF (M)op))−1

(3)
vanishes on the class of the diagonal [∆] ∈ K0(WF (M)−mod−WF (M)).

Here, the left-most term is the K-theory of perfect WF (M)−WF (M)-bimodules, ch is the
noncomutative Chern character, and K is the Kunneth map on Hochschild homology.

Remark 1. Efimov’s examples can be made Calabi-Yau (Efimov, personal communication), so
these results do not follow algebraically from previous results on the existence of Calabi-Yau
structures for Fukaya categories.

It is a fundamental theorem tat

Proposition 1. [18], [7] If M is Weinstein then it is strongly nondegenerate.

See the discussion around Lemma 11 for an explanation of what is needed to replace the
strong nondegeneracy assumption above with the usual nondegeneracy condition of the Abouzaid
generation criterion [1].

Remark 2. In Theorem 3, we use K0(WF (M)−mod−WF (M)) as the domain of the map ch
instead of “WF (M)⊗WF (M)op”. This is because WF (M) is naturally an A∞-category, and
the natural replacement for the tensor product of dg categories A⊗B is the category of bimodules
A − mod − B. It is clear that Kontsevich’s conjectures are invariant under replacing A by a
quasi-equivalent dg-category; Theorem 3 implies Conjecture 2 for A any dga quasi-equivalent to
WF (M).

For the proof of Theorem 2, we take advantage of the degenerations of the moduli space of
annuli with one distingushed marked point on each boundary component. This moduli space is
closely related to the moduli space used in Abouzaid’s proof [1] of the generation criterion: in
our case, the distinguished marked points on each side of the annulus have a relative angle that
is allowed to vary, while in Abouzaid’s case the relative angle is fixed. For a visual summary of
the degeneration argument, we direct the reader to Figure 2.

For the proof of Theorem 3, we use Ganatra’s cyclic open-closed map [17] to rephrase the
statement in terms of symplectic cohomology, and then perform a sequence of bordisms to the
resulting moduli space of curves. At the level of TQFT, the argument is described schematically
in Figure 1 below. In fact, it is possible to give an alternative proof of Theorem 2 that is dual
to our proof of Theorem 3 simply by reading Figure 1 backwards, although we do not pursue
this route in the paper. Thus, the conjectures of Kontsevich are dual to one another, and in the
setting of Fukaya categories the admit geometrically dual proofs.

From the perspective of the cobordism hypothesis (see [14] for an introduction), natural
algebraic conditions on an ∞-category should be the same as conditions on the TQFT that is
equivalent to the∞-category under the cobordism hypothesis. For example, smooth and proper
dg-categories are exactly the fully dualizable dg-categories, which by the original form of the
cobordism hypothesis correspond to fully extended 2d TQFTs (folkore, but see [28]). Similarly,
making the TQFT an oriented TQFT instead of a framed TQFT is related to the Calabi-Yau
condition on an A∞ category [9]. We speculate that the schematic degenerations of Figure
1 should be propoted to axiomatic conditions on a TQFT, which should then correspond to a
“good” algebraic condition on a dg-category. Historically, the identification of natural categorical
properties, such as the notion of a smooth, proper, or Calabi-Yau category, has been helpful for
researchers in many different fields, including symplectic topology. Based on the phenomena
observed in this paper, we hope that the natural analytic behavior of pseudoholomorphic curves
can be a guide for researchers in algebra, showing the way towards a better definition of a “good”
noncommutative space.
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2 Proper Fukaya Categories

To approach Theorem 2, we will borrow an explicit version of the conclusion in the proposition
from Efimov. Please look at Appendix 6 for a discussion of the conventions on A∞ algebras
that we use.

Lemma 1 (Efimov [10] (Prop 2.2)). Let A1, A2 be strictly unital A∞ algebra over a field k, and
let M be a finite dimensional strictly unital A∞ (A1, A2)-bimodule. Assume that dimM <∞.

ψ : HH•(A1)⊗HH•(Aop2 ) −→ HH•(A1)⊗HH•(Aop2 )→ HH•(End(V ))→ k (4)

is given by

ψ((a0, . . . , an)⊗ (b0, . . . , bm)) 7→ strM (m 7→∑
0≤i≤n,0≤j≤m

(−1)zµn+1,m+1(ai, . . . , an, . . . ai−1,m, bj , . . . , b0, bm, . . . , bj+1)). (5)

Here, the strM denotes the supertrace of an endomorphism of a graded vector space, the µi,j
are the bimodule operations, and (−1)z is a sign defined as follows. Let b = (b0, . . . , bm),
and a = (a0, . . . , am). Given an element x of an A∞ algebra, let |x| denote its degree and let
‖x‖ = |x| − 1 denote its reduced degree. Given a tuple f = (f0, . . . , fr) of elements of a graded
vector space and 0 ≤ i ≤ j ≤ r, let

lji (f) =

j∑
k=i

‖fk‖.

Then

z = |m|lm0 (b) + ln0 (a) + li−1
0 (a)lni (a) +

∑
0≤p<q≤j

‖bp‖‖bq‖+
∑

j+1≤p≤q≤m

‖bp‖‖bq‖.

Remark 3. The lemma is stated for finite dimensionalA∞ modulesM , but the same computation
proves the lemma for A1, A2 strictly unital A∞ categories, with M(X,Y ), a finite dimensional
k-vector space for any pair X,Y of objects in A1, A2, respectively. Likewise, the computations
make sense for A∞ modules which are only Z/2Z-graded.

Remark 4. If M is the diagonal bimodule then µi,j = µi+j+1.

The derivation of the above equation uses an expression for the Connes operator on the
cyclic bar complex of a strictly unital A∞ algebra. The Fukaya category Fuk(M) of closed exact
Lagrangians is not strictly unital, it is c-unital, namely, the homology category H(Fuk(M)) is
unital ([25][I.2a]).

2.1 Units

The Fukaya category is not strictly unital; in this section we recall several chain-level notions
of units in A∞ categories and state a convenient algebraic lemma comparing two different such
notions.

Definition 2. A homology unit for a c-unital A∞ category A to be a choice eL ∈ HomA(L,L)
of lift of the unit in H(A) for every object L of A.

Given an object ∆ in a c-unital A∞ category A, we say that eL ∈ HomA(L,L) is a homology
unit for L if it lifts the unit in HomH(A)(L,L).

Given an A∞ algebra A with a homology unit e ∈ A, there is the following useful notion
introduced by FOOO [15]:

Definition 3. (see [16]) A homotopy unit for A is an A∞ algebra structure on A′ := A⊕kf [1]⊕
ke+, where
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• The A∞ operations preserve A ⊂ A′ and agree with the A∞ operations on A;

• The element e+ is a strict unit, and

• µ1(f) = e− e+.

Remark 5. The definition implies that A→ A′ is a quasi-equivalence.

Remark 6. The definition immediately generalizes to arbitrary A∞ categories: given an A∞
category A with a homology unit {eL}L∈Ob(A), one enlarges A to A′ by adding a two-dimensional

graded vector space kfL[1]⊕ ke+
L to EndA(L) for all objects of A, and defines a homotopy unit

for A to be an A∞ structure on A′ extending that of A such that the {e+
L} are strict units and

µ1(fL) = eL − e+
L for every L.

A geometric construction of homotopy units for a single compact lagrangian have been
constructed by [15] and in a significantly more complex setting, for a certain model of the
Wrapped Fukaya category of the product of a pair of Liouville domains, by [16]. For our purposes,
these geometric constructions are not important, and we can simply invoke the following general
algebraic lemma proven in Appendix 5:

Proposition 2. Any c-unital A∞ category with a choice of homology unit {eL} admits a ho-
motopy unit.

2.2 Variants of the Hochschild complex

There are several canonical complexes that compute Hochschild homology that may be associ-
ated to an A∞ algebra, depending on whether it has a strict unit or not and what algebraic
structure is required. The most basic, which makes sense for any A∞ category, is the bar
complex, which, as a graded vector space, is

C•(A) :=
⊕
k≥0

⊕
X1,...,Xk∈Ob(A)

Hom∗(X0, X1)⊗Hom∗(X1, X2)[1]⊗ . . .⊗Hom∗(Xk, X0)[1].

If A is strictly unital, then there is the reduced bar complex, which is a quotient of the bar
complex in which any cyclically composable collection of morphisms may have at most the first
element equal to the a strict unit. We denote the reduced bar complex by Cred• (A); it is called
C•(A) by Efimov (see [10] Section 2). The quotient map C•(A)→ Cred• (A) is an equivalence.

For any A there is also a non-unital Hochschild complex which, as a graded vector space is

Cnu• (A) = C•(A)⊕ C•(A)[1]

described, for example, in ([17] Section 3) and the inclusion C•(A)→ Cnu• (A) is an equivalence
whenever A is c-unital.

2.2.1 A review of S1-actions on chain complexes

We briefly review the various S1 actions on different variants of the Hochschild complexes; see
([17] Sections 2,3) for more details. Equipping S1 = R/Z with the CW structure with one 0-cell
and one 1-cell, the graded group

C−•(S
1) = k[Λ]/Λ2, |Λ| = −1

has the structure of a dg ring, and the inclusion into singular chains on S1 is an equivalence
of A∞ algebras where the latter is equipped with the algebra structure induced by the group
structure on S1. A dg-module over C−•(S

1) is called a mixed complex, and an A∞-module over
C−•(S

1) is called an ∞-mixed complex. A map if ∞-mixed complexes just just a map of A∞-
modules. If A is unital then C•(A), Cred• (A) both have the structure of a mixed complex defined
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by Connes, and the quotient map is a map of mixed complexes. For any A the complex Cnu• (A)
is a mixed complex and if A is unital then C•(A)→ Cnu• (A) is a equivalence of mixed complexes.

Given a chain complex M , the data of an A∞-module structure on M over C−•(S
1) is exactly

the same as the data of a degree 1 map

δ = M →M [[u]] := ̂M ⊗k k[[u]] (6)

where u is a formal variable of degree 2, the hat denotes u-adic completion; where the the u0

term of δ is the usual differential on M , and the k[[u]]-linear extension f δ to an endomorphism
of M [[u]] is a differential. We will denote the components of this map by

δk : M →M [1− 2k]

δ =
∑
k

δku
k. (7)

Clearly one can specify the structure of an ∞-mixed complex on M by specifying maps δk as
above satisfying a necessary identity. One calls the resulting complex M [[u]] the negative cyclic
complex, the k((u))-linear complex M((u)) that one obtains by inverting u the periodic cyclic
complex, and the quotient M((u))/uM [[u]] the cyclic complex. Their homologies are the negative
cyclic homology, periodic cyclic homology, and cyclic homology, respectively.

2.3 Reducing to the Hochschild complex of Fuk(M)

In this section, we explain how to apply Efimov’s formula 5 to the setting of the (non-unital!)
Fukaya category, even though it was derived using a unital model. Furthermore, we elaborate
on why checking Theorem 2 on the image of Hochschild cycles in cyclic cycles suffices to prove
Theorem 2.

Let Fuk(M) → Fuk(M)′ be a choice of homotopy unit for Fuk(M). There is an induced
diagram of mixed complexes

Cnu• (Fuk(M)) Cnu• (Fuk(M)′)

C•(Fuk(M)) C•(Fuk(M)′) Cred• (Fuk(M)′)

(8)

in which the left horizontal arrows are inclusions and all maps are equivalences. This zig-zag
of equivalences of mixed complexes shows that understand the map in Equation 2, it suffices to
compute the image of the map

(HH•(Fuk(M)′)⊗HC•((Fuk(M)′)op)[1]
id⊗δ−−−→ HH•(Fuk(M)′)⊗HH•((Fuk(M)′)op)→ k.

(9)
where the Hochschild and cyclic homologies are computed using the mixed complex structure
on Cred• (Fuk(M)′). We now prove the lemma

Lemma 2. Theorem 2 holds for Fuk(M) if for all Hochschild cycles∑
l

kl(a
l
0, . . . , a

l
nl

)⊗ (bl0, . . . , b
l
ml

) ∈ C•(Fuk(M)) (10)

one has that∑
l

klstrM

(
m 7→

∑
0≤i≤n,0≤j≤m

µn+m+3(ali, . . . , a
l
nl
, . . . ali−1,m, b

l
j , . . . , b

l
0, b

l
ml
, . . . , blj+1)

)
= 0.

(11)
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Proof. For an ∞-mixed complex N , the Connes map δ : HC•(N)→ HH•(N) is the boundary
map of the long exact sequence of complexes (see [22, Theorem 2.2.1])

M = uM [[u]]/u2M [[u]]→M((u))/u2M [[u]]→M((u))/uM [[u]]. (12)

where the identification M = uM [[u]]/u2M [[u]] shifts degree by two. Let M = Cred• (Fuk(M)′),
and write M = M ′ ⊕M ′′, where M ′ is the subcomplex spanned by cycles of composable mor-
phisms for which the first term in the tensor product is the strict unit, and M ′′ is the image
of C•(Fuk(M)) in Cred• (Fuk(M)′), i.e. the subcomplex spanned by cycles of composable mor-
phisms where the first term in the tensor product is not a strict unit. Let y ∈M((u))/uM [[u]]
be a cocycle in the cyclic homology complex. Any cyclic chain y can be uniquely written as

y = ynu + yu + u−1yneg, (13)

where
u−1yneg ∈ u−1M((u))/uM [[u]];

ynu ∈ u0M ′′ ⊂M((u))/uM [[u]];

yu ∈ u0M ′ ⊂M((u))/uM [[u]].

In the mixed complex structure on Cred• (Fuk(M)′), all terms containing a unit are annihilated
by the Connes B operator, and all terms in the image of B contain a unit in the first position
(See Efimov [10], Equation (2.1) or [17]). Denote the Hochschild differential by b; then the
differencial on the negative cyclic complex is b+ uB. Given z ∈M((u))/uM [[u]], we introduce
the notation

z =
∑
i≤0

[z]iu
−i, where[z]i ∈M.

Suppose that y is a cycle, i.e. (d+ uB)y = 0. Plugging in (13), one sees that

b(ynu + yu) = −[Byneg]0 +−u−1[Byneg]−1u
−1 + . . .

Since b(ynu) has no units in first position, but every term on the right hand side must have
units in the first position, we must have that b(ynu) = 0, and thus that (b + uB)(ynu) = 0, so
ynu is a cyclic cycle. Therefore, since Byu = 0, we have that

B(y) ∈ Bynu + u−1M((u))/M [[u]]

and in particular, by the definition of δ (12), one has that

δy = δynu.

But every ynu with bynu = 0 is the image of a Hochschild cycle in C•(Fuk(M)), and the map
HH∗(Fuk(M))→ HH∗(Fuk(M)′) is a quasi-isomorphism. This proves the Lemma.

2.4 Fukaya-categorical conventions

For all d ≥ 3, let Rd be the moduli space of holomorphic disks with d marked points on the

boundary, and let Sd → Rd be the corresponding universal family of disks. Let Rd be Deligne-
Mumford compactification of Rd.

We will use Seidel’s conventions for setting up the compact Fukaya category, with sign
conventions described in Section 6. In this case:

• Standard coordinates on the complex numbers C are z = s+it. Let R± = {s ∈ R;±s ≥ 0}.
Define the standard Riemann surfaces

– Z := R× [0, 1],
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– Z± := R± × [0, 1] ⊂ C, and

– C± := R± × S1, where the complex structure is, in the coordinates s, t on the first
and second factors, given by

i∂s = ∂t.

• A symplectic form gives a bijection between vector fields and one-forms

Xθ ←→ θ = −iXθω;

if θ = dH for some function H, we write XH := XdH and we call XH the Hamiltonian
vector field associated to H. On the cotangent bundle of Rn, the flow x′ = XH gives the
standard form of Hamilton’s equations.

• The symplectic manifold (M,ω) is a Liouville domain, namely, an exact symplectic mani-
fold with contact-type boundary, see Seidel (7b). This comes equipped with a primitive θM
for ω, and thus with a Liouville vector field XM characterized by iXMω = θ (which points
outwards along ∂M) and a smooth real-valued function hM defined in a neighborhood of
∂M characterized by the property that h−1

M (1) = ∂M and XθMhM = hM . We choose
some ω-compatible almost complex structure I on a sufficiently small neighborhood of
∂M which is invariant under the flow of Xθ and such that dhM ◦ i = θM .We can com-
plete (M,ω) to a Liouville manifold by adding on a collar to M of form Rr × ∂M with
θR×∂M = er(θM )|∂M .

• Let Σ be a Riemann surface with boundary obtained by removing a finite number of
points from a compact Riemann surface with boundary Σ̂. We say points in Σ̂ \ Σ are
boundary-marked points if they lie in ∂Σ̂, and otherwise we call them interior marked
points. To define limiting conditions for Floer’s equation, we need to equip marked points
with ends. A strip-like end on Σ at a boundary marked point p of Σ is a proper holomorphic
embedding u from Z± to Σ such that u−1(∂Σ) = R± ×{0, 1} and such that, viewing u as
an embedding into Σ̂, one has that lims→±∞(u(z)) = p. Similarly, a cylindrical end on Σ
at an interior marked point of Σ is a proper holomorphic embedding u from C± to Σ such
that lims→±∞ u(s, t) = p. We say that u is an outgoing, or positive end, and that p is a
positive puncture, if we used Z+ or C+ in the above definition, and that u is an incoming,
or negative end, and that p is a negative puncture, if we instead used Z− or C−. Since
Z+ is biholomorphic to Z−, and similarly C+ is biholomorphic to C−, there is a bijection
between positive and negative ends at a marked point p. Nonetheless, we may think of
the marked points as being divided into positive and negative marked points, and when
we choose ends at the marked points, the type of end will respect this dichotomy. We will
think of Z has having canonical strip like ends Z±, with negative marked point p0 and
positive marked point p1.

• To equip Σ with Lagrangian labels we assign a choice of Lagrangian submanifold LC of M
to each component C ∈ π0(∂Σ).

• Write J for the space of almost complex structures on M which agree with I near the
boundary of M , and write H for the space of smooth functions on M which vanish near the
boundary of M . Floer data on Z are pairs (H,J) ∈ C∞([0, 1];H)×C∞([0, 1];J ). If Σ is a
Riemann surface with boundary equipped with Lagrangian labels, then perturbation data
for that Riemann surface are a pair (K,J) ∈ Ω1(Σ,J )×C∞(Σ,J ), such that K(ξ)|LC = 0
for all ξ ∈ TC ⊂ T (∂Σ), for all connected components C of the boundary of Σ.

• Floer’s equation on a strip equipped with Floer data (H,J) with Lagrangian labels Li on
R× {i}, i = 0, 1, reads

u ∈ C∞(Z,M);u(s, i) ∈ Li for i = 0, 1,

∂su+ J(t, u)(∂tu−XH(t, u)) = 0.
(14)
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This is a special case of the inhomogeneous pseudoholomorphic map equation on a Riemann
surface Σ equipped with Lagrangian labels {LC}C∈π0(∂S) and perturbation data (K,J),
the general form of which is

u ∈ C∞(Σ,M);u(C) ∈ LC for all C ∈ π0(Σ);

(du− Y )0,1 = 0
(15)

where Y ∈ Ω1(Σ, C∞(TM)) is defined by iY (ξ)ω = K(ξ).

• We will assume that M is equipped with a Z-grading, namely, a fiber bundle L̃Gr(M)→M

equipped with a map of fiber bundles ˜LGr(M)→ LGr(M) to the Lagrangian Grassman-
nian bundle ofM , such that on every fiber the map of a universal covering. The obstruction
to the existence of a Z-grading is whether 2c1(M) = 0.

• The Fukaya category Fuk(M) has objects Lagrangian branes L̃ = (L,α) where L ⊂M is a
closed exact Lagrangian submanifold of M and α is a lift of the Gauss map L→ LGr(M)

to ˜LGr(M) (the grading of L). The obstruction to the existence of α the Maslov class of
L, µL ∈ H1(L,Z).

• The Fukaya category is only defined after a choice of coherent peturbation data, namely,

1. A choice of consistent universal choice of strip-like ends in the sense of Lemma II.9.2
of [25]; this involves a choice for all d ≥ 2, for each universal family

Sd+1 → Rd+1

of disks with d+1 marked points p0, . . . , pd+1, ordered counterclockwise on the bound-
ary of the disk, with p0 the unique negative marked point and the rest positive marked
points,

2. For every ordered pair of Lagrangians L0, L1, a choice of Floer data (H,J) on the
strip with R× {i} labeled by Li, for which the image of L0 under the time-1 flow of
H intersects L1 transversally;

3. A choice of consistent universal choice of perturbation data in the sense of Lemma
II.9.5 of [25]; and moreover,

4. the choices of Floer data and perturbation data are required to be regular, namely,
that the linearization of Floer’s equation 14 at any solution u is surjective, and
likewise such that for any disk Σ̂ ∈ Rk+1 with marked points p0, . . . pk, Lagrangian
labels {Li}ki=0 on the boundary components of Σ = Σ̂ \ {pi}ki=0, with Li on the
component between pi and pi+1 (with pk+1 = p0) and any finite-energy solution u to
the inhomogeneous map equation 15 on Σ with the above Lagrangian labels and the
perturbation data induced by the choice of universal perturbation data above, the
extended linearized operator is surjective (see equation (II.9.18) of [25] for a definition
of the operator, and (II.9.26) of (loc. cit.) for an explicit formula; see (II.8.12) for a
definition of the energy of a solution to (15).).

The universal choices of strip-like ends of perturbation data allows us to make sense
of the the spaces of solutions to the pseudoholomorphic map equations for the families
Sd+1 → Rd+1. Namely, given any disk Σ̂ ∈ Rd+1, d ≥ 2, with marked points and
Lagrangian labels as in the last bullet point above, write M(Σ̂, L0, . . . , Lk) for the set
of finite energy solutions to the equation 15 on Σ with the Lagrangian labels and the
perturbation data determined by the choices made, and define

MRk+1(L0, . . . , Lk) := {(Σ̂, u)|Σ̂ ∈ Rk+1, u ∈M(Σ̂, L0, . . . , Lk)} (16)
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as a set; equipping this set with the Gromov topology on stable maps (e.g. [13]), this set
is (in our setup) a manifold. Similarly, given closed exact Lagrangians (L0, L1), let

M̃(L0, L1),M(L0, L1)

denote the set of solutions to Floer’s equation with Lagrangian labels Li and the Floer
data chosen for these Lagrangians, and its corresponding quotient by the R-action induced
by the automorphisms of Z; these are both manifolds in the Gromov topology.

• Let (L̃0, L̃1) be a pair of Lagrangian branes with (L0, L1) the underlying Lagrangian
submanifolds. Let C(L̃0, L̃1) denote the set of time-1 Hamiltonian chords from L0 to L1,
namely, maps γ : [0, 1] → M such that γ(i) ∈ Li for i = 0, 1, and dγ/dt = XHt(γ). For
every y ∈ C(L̃0, L̃1), the gradings of the L̃i define the degrees |y| ∈ Z of the chords (see
[4, Section 1.3], or [25, Section II.11]).

• The underlying graded vector space of the morphism cochain complex CF ∗(L0, L1) is the
sum

CFn(L0, L1) =
⊕

y∈C(L̃0,L̃1)
|y|=n

Z/2[y]

• Let (L̃i)
k
i=0, k ≥ 1, be a collection of objects of Fuk(M), and

γi ∈ C(L̃i−1, L̃i), i = 1, . . . k.; γ0 ∈ C(L̃0), L̃k).

Denote by
M(γ0; γ1, . . . , γk)

the subspace of M(L0, L1, . . . , Lk) for which u limits to γ0, . . . , γk at the marked points
p0, . . . , pk in the coordinates determined by the strip-like ends that have been chosen for
the domain of the map. In our setup, whenever

k∑
j=1

|γj |+ (2− k)− |γ0| = 0,

this is a compact manifold.The structure operation for the Fukaya category Fuk(M),

µk : CF ∗(L̃0, L̃1)⊗ . . .⊗ CF ∗(L̃k−1, L̃k)→ CF ∗(L̃0, L̃k)[2− k]

is given by

µd(y1, . . . , yk) =
∑

γ0∈C(L0,Lk);∑k
j=1 |γj |+(2−k)−|γ0|=0

∑
u∈M(γ0;...,γk)

[γ0]. (17)

These operations satisfy the A∞ equations (129).

2.5 Opposite Fukaya categories and negative symplectic forms

Now recall the following

Definition 4. Given an A∞ category A over an arbitrary ring R, its opposite category is the
A∞ category Aop with the same objects as that of A, and

homAop(X,Y ) = homA(Y,X),

µdAop(x1, . . . , xd) = (−1)
∑

1≤i<j≤d(|xi|−1)(|xj |−1)µdA(xd, . . . , x1).

9



Symplectic manifolds also admit a notion of ‘opposites’:

Definition 5. Given a symplectic manifold (possibly with boundary) (M,ωM ), its opposite is
the symplecitcmanifold (M−, ωM−) with M− = M,ωM− = −ωM . If M was a Liouville domain
then M− is also a Liouville domain - the primitive of ωM− is taken to be the negative of the
primitive of ωM , and the resulting Liouville flow is then the same as that for M .

The choices described in Section 2.4 needed to define Fuk(M) for M a Liouville domain
give a corresponding collection of choices needed to define Fuk(M−). By leaving the grading
on M = M− and the consistent universal choice of strip-like ends unchanged, replacing the
position-dependent almost complex structures in all perturbation data with their negatives,
keeping all Hamiltonian-valued one-forms going into the perturbation data the same, one gets
the data needed to define the Fukaya category of M−. Composition with complex-conjugation
then gives a bijection between maps from disks contributing to the operations of Fuk(M) and
of Fuk(M−) while reversing the order of the Lagrangian labels on the boundary of the disk,
proving the

Lemma 3. With the above choices of data needed to define Fuk(M−), if we are working over
a field k of characteristic 2,

Fuk(M−) = Fuk(M)op. (18)

A much more refined statement was proven by Sheridan in [], which proved the following
isomorphism for the variant of the Fukaya category that is defined over the integers, whenever
a certain additional “grading datum” is specified. See Appendix 6 for a discussion of various
notions of opposite A∞ categories.

2.6 A moduli space of annuli

In this section we define a moduli space Mn+1,m+1 of pseudoholomorphic maps from annuli
with marked points which will play the central role in the proof of Theorem 2. First we fix our
notation for the moduli of marked Riemann surfaces with boundary; then we specify how to
choose coherent perturbation data; and finally we use the chosen perturbation data to define
the moduli space.

2.6.1 Conventions for moduli of marked Riemann surfaces

For any n,m ≥ 1, let Cn,m be the moduli space of holomorphic annuli with n marked points
on one boundary component and m marked points on the other, up to marked-point-preserving
biholomorphism. In our conventions for orienting the boundary ∂N of an oriented manifold N ,
an oriented bases of TxN for x ∈ ∂N is given by the outwards pointing vector followed by an
oriented basis for Tx∂N ; in particular, the induced orientation on the boundary of the unit disk in
C goes counterclockwise. Label the n marked points on one boundary component α0, . . . , αn−1

such that the αi are arranged with index i increasing along with the induced orientation of
the boundary; likewise, label the m marked points on the other boundary component such
that the βi are arrange with the index i increasing opposite to the induced orientation of the
boundary. A diagram of this labeling convention is given in Figure ??. Let Cn,m be the Deligne-
Mumford compactification of this moduli space, which is a smooth manifold with corners (see
Liu’s thesis [21, Section 4]). There is a universal family of stable marked bordered Riemann
surfaces Σ̂n,m → Cn,m. The fibers (Σ̂n,m)t of this family over strata of positive codimension are
gluings of marked Riemann surfaces along certain pairs of marked points, i.e. nodal Riemann
surfaces; the corresponding disjoint union of marked Riemann surfaces before the gluing is

called the normalization of (Σ̂n,m)t, and is denoted by ˜(Σ̂n,m)t. Let Σn,m be Σ̂n,m with all
marked points removed. The combinatorical types of the strata of Cn,m and their adjacencies
are diagrammed schematically in Figure 2.
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2.6.2 Conventions for gluing

We briefly clarify our conventions for gluing Riemann surfaces. Namely, given a pair of Riemann
surfaces with boundary (Σ̂+, Σ̂−) equipped with a pair of interior marked points p± ∈ Σ̂±
together with a choice of positive cylindrical end φ+ for p+ and negative cylindrical end φ− for
p−, we may form the glued Riemann surface

Σ̂+#`,θΣ̂−,

where (`, θ) ∈ (0, 1] × S1 is a gluing parameter, by removing φ+((− log(`)/π,∞) × S1) from
Σ̂+, removing φ−((−∞, log(`)/π)×S1) from Σ̂−, and identifying the resulting boundary circles
φ±({∓ log(`)/π)× S1) via

φ+(− log(`)/π), θ + τ) ∼ φ−((+ log(`)/π), τ), for τ ∈ S1.

Similarly, given a pair of Riemann surfaces with boundary (Σ̂+, Σ̂−) with equipped with a
pair of boundary marked points p± ∈ Σ̂± and strip-like ends φ± at p±, respectively, we may
form the glued Riemann surface

Σ̂+#`Σ̂−

with gluing parameter ` ∈ (0, 1] by removing φ+((− log(`)/π,∞) × [0, 1]) from Σ+ and ,
φ−((−∞, log(`)/π)× [0, 1]) from Σ̂− and identifying the resulting Riemann surfaces along

φ+({− log(`)/π} × [0, 1]) ∼ φ−({log(`)/π} × [0, 1]).

The gluing construction gives families of nodal Riemann surfaces

Σ̂+#`,θΣ̂− → D := {z = e2π(`/2+iθ)} ⊂ D

Σ̂+#`Σ̂− → [0, 1]

with smooth fibers away from zero; when Σ̂± are stable, these families correspond to maps from
D or [0, 1] to the Deligne-Mumford compactification of moduli of marked Riemann surfaces
with boundary [21] which send zero into a boundary stratum of the compactification. Given a
family of Riemann surfaces Σ̂t± with parameter t, together with a smoothly varying family of

marked points pt± ∈ Σ̂t± and a smoothly varying family of ends at the pt±, the gluing construc-
tion applied to the whole family gives a smooth map [25, Lemma 9.2] to the neighborhood of
a complex codimension 1 boundary of the appropriate Deligne-Mumford moduli space. More
generally, given several distinct smoothly varying families of points (pti)± ∈ Σ̂t±, for i = 1, . . . , k
with corresponding smoothly varying families of ends, the gluing construction applied simulta-
neously to all the pti at once gives a smooth map to a neighborhood of a higher codimension
boundary stratum of the appropriate Deligne-Mumford moduli space; choosing the families to
be the universal ones over the boundary strata, one gets a smooth parametrization, the gluing
coordiantes, of the neighborhood of the boundary of the Deligne-Mumford space.

Given perturbation data in the sense of (15) on Σ̂± for which the choices of Lagrangian
labels near p and limiting Floer data at p agree, the gluing construction gives canonical choices
of perturbation data on the gluings of Σ̂±, the glued perturbation data, which vary smoothly in
the gluing coordinates.

2.6.3 Coherence data

To choose the coherent perturbation data needed to define the moduli spaceMn+1,m+1, we will
need to choose a universal choice of ends on Cn,m. We will first state how to declare all marked
points on all normalizations of curves in the universal family as either positive or negative,
while satisfying the condition that any pair of identified points are of oppositite valence, so that
we know whether to choose positive or negative ends in each case. We declare all the initial
marked points in the top dimensional stratum of Cn,m to be positive. As we degenerate to
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lower-dimensional strata (see Figure 2), there is either a component that is an annulus, in which
case we impose the constraint that all the boundary marked points of the annulus are positive;
or the curve has two disks glued at an interior point, in which case we require that all boundary
marked points of each of these two disks are positive, and we choose that the interior marked
point on the component with boundary marked points labeled by αi is positive; or the stratum
is a degeneration of the stratum described in Figure 2 (C), where a degeneration of the annulus
occurs via a self-gluing of a disk via two boundary marked points. For that last stratum, we
call the marked point involved in the self-gluing that we declare to be negative p−, and the
one we declare to be positive p+; the valences are determined by the requirement that reading
along induced orientation of the boundary of the disk, we have a marked point bj+1 (for some
index j+1), followed by the negative marked point p−, followed by a marked point αi (for some
index i); and for p+, we have some αi−1, then p+, then some βj (see Figure ??). With these
constraints, we have that

Lemma 4. There exists a unique choice of valences for the marked points of the fibers of (Σ̂n,m),
satisfying the constraints of the paragraph above, together with the condition that any pair of
identified points are of opposite valence, and the condition that that the valences for marked
points that are not to be glued are preserved by gluing. Moreover, with this choice, for any disk
with no interior marked points occuring as a component of a fiber of one of the universal curves
(Σ̂n,m), there is exactly one negative marked point, and so that disk may be viewed as an element
of the associahedron Rk+1 used to define Fuk(M).

A universal choice of ends for Cn,m is a choice, for all n,m, for every stratum S of Cn,m, for

every t ∈ S, for every marked point of the normalization ˜(Σ̂n,m)t of the fiber of the universal
curve over t,of an end at the marked point, such that the resulting choice of ends on any gluing

Σ′ of ˜(Σ̂n,m)t along a collection of points identified in (Σ̂n,m)t agrees with the ends chosen for
Σ′ viewed as a fiber of the universal curve over another stratum of Cn,m, and such that these
choices of ends vary smoothly over the strata.

A universal and consistent choice of perturbation data on Cn,m, is a choice, for all n, m,

for all possible choices of locally constant Lagrangian labelings of the fibers of Σ̂n,m|Cn,m) (each

of which induces Lagrangian labelings on all fibers of Σ̂n,m), for all strata S of Cn,m, choose
perturbation data for the fibers of the universal curve SS → S varying smoothly over S, such on
every component of Ss that is a disk with n+1 boundary marked points, the perturbation datum
agrees with the perturbation datum on the corresponding disk in the Stasheff associahedron
chosen to define the Fukaya category; and such that under any gluing of marked points, the
perturbation data chosen for the glued surface agree with the glued perturbation data to infinite
order zero in the gluing coordinates; and such that the Hamiltonian term of the perturbation
data is zero near any interior marked points.

We call the combination of a universal choice of ends and a universal and consistent choice
of perturbation data on Cn,m to be a choice of coherence data for Cn,m.

For any C ∈ Cn+1,m+1 let εαi and εβi denote the end chosen on (Σn+1,m+1)C at the corre-
sponding marked point. Choose a pair of cyclically-composable tuples morphisms a0, . . . , an and
b0, . . . , bm in Fuk(M). This induces a smooth family of Lagrangian labelings of the universal
curve over Cn+1,m+1; we write Lx for the Lagrangian assigned to a point x of any boundary
component of a fiber of the universal curve. We define the moduli space of stable maps

Mn+1,m+1(a0, . . . an; b0, . . . , bm) =


C ∈ Cn+1,m+1; u ∈ C∞((Σn+1,m+1)C ,M);

u(x) ∈ Lx for all x ∈ ∂(Σn+1,m+1)C ;
(u,C) (du− YC)0,1 = 0;

lims→+∞ εαi(s, t) = ai(t);
lims→+∞ εβi(s, t) = bi(t)


(19)

This moduli space of stable maps has a Gromov-Floer bordification

Mn+1,m+1(a0, . . . an; b0, . . . , bm)
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which admits a stabilization map

Mn+1,m+1(a0, . . . an; b0, . . . , bm)→ Cn+1,m+1

which sends a stable map to the stabilization of its domain.
The standard inductive transversality and compactness arguments [25, (9i), (9k), (9l)] show

that

Lemma 5. Coherence data for Cn,m exist, and moreover there are choices of coherence data
such that the moduli spaces Mn+1,m+1(a0, . . . an; b0, . . . , bm) are unions of smooth manifolds of
dimensions equal to the indices ind(Du) of the linearized Cauchy-Riemann operators associated
to the elements u ∈ Mn+1,m+1(a0, . . . an; b0, . . . , bm) of a given component. The number of el-
ements u ∈ Mn+1,m+1(a0, . . . an; b0, . . . , bm) for which ind(Du) = 0 is finite, and they form a
discrete subspace. The Gromov-Floer bordifications Mn+1,m+1(a0, . . . an; b0, . . . , bm) are com-
pact. For any 1-dimensional component A of Mn+1,m+1(a0, . . . an; b0, . . . , bm), the maps added
by the Gromov-Floer bordification never contain maps from domains with interior marked points,
since those are of virtual codimension at least 2.

Choose coherence data for Cn,m as in the lemma above.
We define #Mn+1,m+1(a0, . . . an; b0, . . . , bm) to be the parity of the (finite) number of zero-

dimensional components of Mn+1,m+1(a0, . . . an; b0, . . . , bm).

2.7 Proof of Theorem 2

Having defined the moduli space MCn+1,m+1(a0, . . . an; b0, . . . , bm), we can define an operation

R : C•(Fuk(M))⊗ C•(Fuk(M)op)→ k

by setting

R((a0 ⊗ . . .⊗ an)⊗ (b0 ⊗ . . .⊗ bm)) = #Mn+1,m+1(a0, . . . an; b0, . . . , bm).

Proposition 3. Let φ be the expression in Equation 5 for M the diagonal bimodule of Fuk(M)
(see Remark 4), and let d be the differential on the domain of R. Then above operation satisfies

R(d(x)) = φ(x). (20)

Proof. Suppose x = (a0 ⊗ . . . ⊗ an) ⊗ (b0 ⊗ . . . ⊗ bm). By linearity it suffices to prove the
proposition for such x.

The expression R(d(x)) is a count of certain configurations of disks contributing to A∞
operations in Fuk(M) and in Fuk(M)op = Fuk(M−) (Lemma 3) which lie in zero-dimensional
moduli spaces, incident along their negative marked points to pseudoholomorphic annuli which
lie in zero-dimensional components of someMCn+1,m+1(a′0, . . . a

′
n; b′0, . . . , b

′
m); in other words, it

is a count of curve configurations as in (B) of Figure 2.
Because we have chosen coherence data as in Lemma 5, the gluing theorem for pseudo-

holomorphic maps says that every such configuration arises as a boundary point of a one-
dimensional component A of the Gromov-Floer compactification of some moduli space of annuli
Mn+1,m+1(a′′0 , . . . a

′′
n; b′′0 , . . . , b

′′
m) for some pair of tuples of cyclically composable morphisms

(a′′0 , . . . , a
′′
n) and (b′′0 , . . . , b

′′
m). Combining the conjugation needed to define the A∞ operations

in Fuk(M−) (Section 2.5) with the reversed order of labels of the marked points {bj} relative
to the boundary orientation (Section 2.6.1), we see that we must have a′′i = ai and b′′i = bi for
all i.

The other curve configurations added by the Gromov-Floer bordification to compactify the
component A must correspond to stable maps from a pre-stable domain D that upon stabilizing
becomes one of the domains depicted in Figure 2. The Lagrangian boundary conditions we
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consider are exact, so any such stabilization cannot collapse any disks with only one boundary
puncture, as such maps can never occur with an exact Lagrangian boundary. By Lemma 5, D
cannot have any component containing an interior node. So D must either be a map from a
prestable domain that is contributing to the count in Rdx, as in (B), Figure 2, or a map from a
pre-stable domain with stabilization a self-gluing of a disk Cn,m. But, in the latter case, if the
stabilization map did not preserve the domain (i.e. unstable strips were present), then gluing
the collapsed components back on would mean that u was not a boundary point of a moduli
space consisting of maps from annuli of index exactly 1, but instead of index greater than 1. So
in the latter case u a map from an annulus with one self-gluing, exactly as in (C), Figure 2. But
these latter map, due to our conventions for positive and negative marked points (Figure ??)
are exactly the maps which define φ, which is a supertrace, in (20).

Theorem 2 follows immediately from Lemma 2 and the Proposition, since if x as in (10)
represents a Hochschild class then (20) shows that φ(x) = 0. �

Remark 7. In the general case, where one studies the Fukaya category of compact Lagrangians
on a non-exact symplectic manifold, the curves in MCn+1,m+1

(a0, . . . an; b0, . . . , bm) might de-
generate via boundary disk bubbles, which would invalidate the above argument (ignoring for
a moment the thorny issue of virtual cycles). I expect, however, that if the boundary disk
bubbles are taken into account in the non-exact case, then the analysis of the degenerations of
MCn+1,m+1(a0, . . . an; b0, . . . , bm) would prove that the un-curved Fukaya category Fuk(M) [? ]
satisfies Equation 2.

3 Smooth Fukaya Categories

In this section we prove Theorem 3. The strategy is to replace the algebraically defined map

K0(WF (M)⊗WF (M)op)
ch−→ (HH•(WF (M))⊗HH•(WF (M)op))0

id⊗δ−−−→ (HH•(WF (M))⊗HC−• (WF (M)op))1,
(21)

where WF (M) denotes the Wrapped Fukaya category of M , with the simpler Floer-theoretic
map

K0(WF (M ×M−))
ch−→ HH∗(WF (M ×M−))

OC−−→ SH∗(M ×M−)

= SH∗(M)⊗ SH∗(M−)→ SH∗(M)⊗ (SC∗S1)∗(M−).
(22)

Here, OC denotes the open-closed map, SH∗ denotes symplectic cohomology, and (SC∗S1)∗ de-
notes negative symplectic cohomology, a symplectic analog of negative cyclic homology. Certain
straightforward Floer-theoretic opearations (Appendix 4) together with existing results, allow
us to show that the image of the diagonal bimodule under the map in (21) is zero if and only if
the image of the diagonal Lagrangian submanifold under the map in (22) is zero, whenever M
is a Weinstein domain. This latter image has a relatively simple description in terms of moduli
spaces of holomorphic curves, which we then manipulate using analytic methods to prove the
Proposition.

In Section 3.1 we describe our conventions for Wrapped Floer cohomology, symplectic co-
homology, the open-closed map, the construction of homology units in symplectic homology,
as well as Ganatra’s construction of positive/negative/cyclic symplectic cohomology and the
corresponding open-closed maps. In Section 3.2 we recall alegbraic constructions such as the
category of perfect complexes, and relate the maps (21) and in (22). Finally, in Section 3.3
we perform a sequence of bordisms on moduli spaces of curves to show that the image of the
diagonal Lagrangian submanifold under the map in (94) is zero.
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3.1 Conventions

Throughout this section, M will be a Liouville manifold equipped with a grading. We will write

M = M̄ ∪∂M̄ [0,∞)r × ∂M̄ (23)

for the decomposition of M into a Liouville domain M̄ and its conical end. We will assume that
the Reeb flow on ∂M is nondegenerate; this can be achieved by a generic perturbation of the
Liouville vector field on M .

The Wrapped Fukaya category WF (M) is an A∞ category depending on M and its choice
of grading; WF (M) is also dependent on certain auxiliary choices, but it is independent of
those choices up to quasi-equivalence. Our conventions for the definition of the Wrapped Fukaya
category are those in [17] and [16], which largely agree with those in [1]; see Section 3.3, Definition
6 of [17] for a precise statement of these conventions. We will allow graded non-Pin Lagrangians
as objects of WF (M), in which case WF (M) is only defined over a field k of characteristic
2. By relying on previous work, we will not need to work explicitly with the Wrapped Fukaya
category beyond its formal categorical properties, so we will not describe the construction of
the Wrapped Fukaya Category further. We will, however, have to manipulate certain moduli
spaces arising in the ∞-mixed complex structure on symplectic cohomology defined in [17]; we
describe our conventions, which also agree with those of [1], [17], in section 3.1.2.

3.1.1 Hamiltonians and almost complex structures

This section fixes notation for a set of Hamiltonian and complex-structure terms for perturba-
tions of Floer’s equation which are sufficient to achieve transversality for the moduli spaces we
will consider and for which an integrated maximum principle [2] can prove compactness of the
moduli spaces. We first describe the convenient class of Hamiltonians:

Definition 6. Let
H(M) (24)

denote the set of functions H ∈ C∞(M) which, when restricted to the conical end R × ∂M̄ of
M , have the property that for every r0 >> 0 there is an R > r0 and an εR > 0 such that

H(r, y)|(R−εR,R+εR)×∂M̄ = r2. (25)

We now describe the convenient class of almost complex structures:

Definition 7. Let
J (M) (26)

be the set of almost complex structures of rescaled contact type, namely, those almost complex
structures J on M such that

λ ◦ J = −rdr. (27)

Remark 8. This is the same as the class of almost complex structures used in [16], and a special
case of those used in [17].

3.1.2 Conventions about wrapping

The symplectic cohomology of M is a chain complex

SC∗(M ;HS1

, JS
1

), (28)

depending on the closed-string Floer data

HS1

(t) ∈ C∞([0, 1]t,H(M)), a time-dependent family of Hamiltonians, and (29)

JS
1

∈ C∞([0, 1]t,J (M)), a time-dependent almost complex structure , (30)

which satisfy the following
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Assumption 1.

The set of closed time-1 orbits of the Hamiltonian vector field XHS1 associated to the Hamilto-

nian HS1

, denoted by

C(HS1

), (31)

consists entirely of nondegenerate orbits.

Throughout this section we will use a convenient notation for a natural set of coordinates
on the punctured plane, thought of as a Riemann surface:

C = (−∞,∞)s × S1
t ' C∗z,

z = es+2πit.
(32)

Whenever Assumption 1 holds, one can define, for every pair y± ∈ C(HS1

), the moduli space
of Floer trajectories

M(y−, y+) =

{
u ∈ C∞(C,M)|(du−XHS1 ⊗ dt)0,1

JS1 = 0, lim
s→±∞

u = y±

}
/R, (33)

where the R quotient is by translation in the s direction. This moduli space has a Gromov-Floer
bordification

M(y−, y+). (34)

The graded abelian group underlying the symplectic cohomology chain complex is

SCk(M ;HS1

, JS
1

) =
⊕
y∈M

CZ(y)=n−k

Z/2[y] (35)

and to make sense of the differential on this chain complex, one must impose an additional
condition, namely

Assumption 2. For all y± ∈ C(HS1

) the spacesM(y−, y+) are smooth manifolds of dimension
one less than the Fredholm index of the curves representing points on these spaces, and their
Gromov bordifications M(y−, y+) are compact.

There is a fundamental and standard

Lemma 6. There exist choices of closed-string Floer data satifying Assumptions 1 and 2. Given
such choices, for every y+ ∈ C(HS1

) the space M(y−, y+) is empty for all but a finite number
of orbits y−.

Given such a choice of closed-string Floer data one defines the differential on the cochain
complex SCk(M ;HS1

, JS
1

) to be

d[y+] =
∑

y−∈C(HS1 )

∑
u∈M(y−,y+)
indu=1

[y+]. (36)

3.1.3 Some tools for action arguments

There is a particularly convenient class of Hamiltonians for symplectic cohomology which we
wish to use, namely, the functions

H0 + F (t) = HS1

(t) ∈ C∞([0, 1]t,H(M))

with H0 a t-independent function on M such that

H = r2 on M \M,H a Morse function on M with no time-1 non-constant Hamiltonian orbits
(37)
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and F (t) a function zero on an open neighborhood of M .
In our conventions, action of an orbit of a Hamiltonian H on M is

AH(x) = −
∫
x

λ+

∫ 1

0

H(x(t))dt, for x ∈ CM (H) (38)

A standard calculation [23] shows that the action of any orbit of H contained in M \ M̄ is

negative, so for such HS1

(t), the only orbits of positive action are (constant) orbits of H|M̄ . By
choosing F sufficiently C1-small and only supported in a neighborhood of the orbits of HM̄ , and
appealing to the standard transversality and compactness arguments for Floer trajectories, we
can conclude that

Lemma 7. There exist closed-string Floer data (HS1

, JS
1

) with HS1

as in (37, so that the
Floer data satisfy Assumptions 1, 2, and moreover:

1. the only orbits of positive action are the constant orbits,

2. there are finitely many orbits of action greater than any fixed number;

3. If we look instead at orbits of x of −H, then there are only finitely such orbits of A−H(x)
less than any fixed number.

3.1.4 The ∞-mixed complex structure on symplectic cohomology

In contrast to the very standard preceding section, this section describes a sequence of moduli
spaces recently introduced by Ganatra [17] which equip symplectic cohomology with the struc-
ture of an∞-mixed complex. The idea that symplectic cohomology should have such a structure
is very old, with motivation being traced back to Floer’s implementation [11] of Witten’s use
of S1 localization on the free loop space [30]. While there are Morse-Bott models for symplec-
tic cohomology for time-independent hamiltonians [5], for which the BV operator is strict, the
general strategy of using the a convenient cell structure on BS1 to build the ∞-mixed complex
structure is very old [29] [23] [6]; the moduli spaces in [17] arise from a different cell structure
for BS1 than the most traditional one. A variant of the∞-mixed complex structure is carefully
constructed in Zhao’s paper [31] (see also [3]). There, Zhao discusses the subtle interaction
between the action filtration and the completions involved in cyclic homology; see Remark 9 for
an example.

We begin by recalling the definition of the domains of Ganatra’s moduli spaces:

Definition 8. An r-point angle-decorated cylinder is a sequence of points p1, . . . , pr ∈ C satis-
fying

(p1)s ≤ . . . ≤ (pr)s. (39)

The heights and angles associated to this data are

hi = (pi)s, s = 1, . . . , r, and θi = (pi)t, i = 1, . . . , r, respectively. (40)

The moduli space of r-point angle-decorated cylinders

Mr (41)

is the space of r-point angle-decorated cylinders modulo simultaneous s-translation of all the
points {pi}. We think of this as a moduli space of cylinders equipped with certain auxiliary
marked points.

Every r-point angle-decorated cylinder {pi} has an associated positive cylindrical end at +∞
on C given by

ε+ : [0,∞)× S1 → C

(s, t) 7→ (s+ hr + 1, t),
(42)
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and negative cylindrical end at −∞ given by

ε+ : (−∞, 0]× S1 → C

(s, t) 7→ (s− (h1 + 1), t).
(43)

The space of broken r-point angle-decorated cylinders

Mr =
⊔
s

⊔
j1,...,js∑
ji=r

Mj1 × . . .×Mjs (44)

is a compactification of Mr defined as a smooth manifold with corners, with the s-fold broken
configurations comprising the codimension s boundary, and the manifolds-with-corners structure
defined using the gluing maps determined by the ends (42) and (43). (This makes sense because
the ends induced on a glued curve exactly agree with the ends in (42) and (43).)

The points defining an angle-decorated curve are allowed to have coinciding heights, giving
rise to certain partially-defined forgetful maps between these moduli spaces which will be later
important to state the consistency conditions for Floer data defining the ∞-mixed complex
structure.

Definition 9. Define the space
Mi

r, 1 ≤ i ≤ r − 1 (45)

as the locus in Mr for which hi = hi+1. Let

Mi

r (46)

be the closure of Mi
r in Mr. There is a map

πi :Mi
r →Mr−1; πi(p1, . . . , pr) = (p1, . . . , pi, pi+2, . . . , pr), (47)

which extends uniquely to a continuous map

πi :Mi

r →Mr−1. (48)

The manifold with corners Mr thus has a boundary ∂Mr covered the images of maps

Mk ×Mr−k → ∂Mr, and (49)

Mi

r → ∂Mr. (50)

Definition 10. Let (HS1

, JS
1

) be a choice of closed string Floer data satifying Assumptions 1
and 2. A universal and consistent choice of Floer data for the S1-action is a choice, for every
r ≥ 1 and every representative Ĉ = (Ĉ1, . . . , Ĉs) ∈Mr with Ĉi = {pk}jik=1, of surface dependent
Hamiltonians

HĈi : C → H(M) (51)

and a surface-dependent almost complex structures

J Ĉi : C → J (M), (52)

called the Floer data associated to Ĉ, which are compatible with the closed-string Floer data
in the sense that

(εi±)∗HĈ(s, t) = HS1

(t), and

(εi±)∗J Ĉ(s, t) = JS
1

(t)
(53)
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where εi± is are the canonical cylindrical ends of (42) (43) associated to the angle-decorated

cylinder Ĉi.
These Floer data are required to vary smoothly over Mr, in the sense that the Floer data

vary smoothly over the interiors of the Mr, and they agree to infinite order at the boundary
strata with: the Floer data near the boundary strata of the form (49) induced by gluing the
product Floer data chosen lower-dimensional moduli spaces; and, with the Floer data induced
near the boundary strata of the form (50) by pulling back via the map πi (48) the Floer data
choen on Mk−1.

Given a universal and consistent choice of Floer data for the S1 action, Ganatra defines the
moduli space

Mr(y−, y+) =

{
u : S1 × R→M,p = (p1, . . . , pr) ∈Mk|(du−Xp ⊗ dt)0,1

Jp
= 0; lim

s→±∞
u(s, t) = y±(t);

}
(54)

with Gromov-Floer compactification
Mr(y−, y+) (55)

and defines, for k ≥ 1, the operation

δk : SC∗(M)→ SC∗−2k+1(M)

δk([y+]) =
∑

y−∈C(HS1 )

∑
u∈Mr(y−,y+)

ind(Du)=− dimMk

[y−]. (56)

He then proves

Proposition 4. [17] Universal and consistent choices of Floer data for the S1 action exist.
Writing δ0 for the differential on symplectic cohomology, the operations {δi}∞i=0 define the struc-
ture of an ∞-mixed complex on symplectic cohomology as in Equation 7. Moreover, given any
pair of choices of closed-string Floer data (HS1

i , JS
1

i )i=1,2 and corresponding Floer data for the
S1 action, there is continuation map

SC∗(M ;HS1

1 , JS
1

1 )→ SC∗(M ;HS1

2 , JS
1

2 ) (57)

which is a quasi-isomorphism and which extends to a map of ∞-mixed complexes.
Moreover, if the closed-string Floer data are chosen as in Lemma 7 then the Hamiltonian

terms of the Floer data for the S1-action can be chosen to be independent of p ∈ Mr
when

restricted to M (see [17, Section 4.4]).

The negative cyclic complex, periodic cyclic complex, and cyclic complex for the ∞-mixed
complex structure described above define the underlying complexes for negative symplectic co-
homology (SC−S1)∗, perodic symplectic cohomology (SC∞S1)∗, and cyclic symplectic cohomology
(SC+

S1)∗, respectively. The cohomologies of the corresponding complexes will be denoted by

(SH
−/∞/+
S1 )∗.

3.1.5 Recollection of Wrapped Floer cohomology

While we will avoid most of the technical details underlying the Wrapped Fukaya category, we
must now recall the definition of its morphism groups.

We say that a Lagrangian submanifold L ⊂M is conical at infinity f

L ∩ [r,∞)× ∂M̄ = [r,∞)× ∂L (58)

where r > 0 and ∂L ⊂ ∂M̄ is a Legendrian submanifold. The objects of the Wrapped Fukaya
category are Lagrangians conical at infinity that are equipped with auxiliary data, e.g. gradings.
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Given two Lagrangians L0 and L1 that are each conical at infinity, one chooses a function
Ht : [0, 1]t → H(M) such that the image of L0 under the time 1 flow of Ht is transverse to L1,
and defines the abelian group underlying the Hom complex HomWF (M)(L0, L1) to be free Z/2
vector space on

C(L0, L1;Ht) = {γ : [0, 1]→M | γ′(t) = XHt(γ(t)), γ(i) ∈ Li for i = 0, 1}. (59)

The differential then counts solutions to Floer’s equation 14 for J : [0, 1]→ J (M). It is standard
that for generic J these moduli spaces of solutions consist of regular trajectories, and that for
such (H,J), the Gromov-Floer bordifications of the moduli spaces are compact.

In fact, in [16], which we use heavily, one requires a number of additional constraints; namely,
Hamiltonian terms H∆ are all strictly quadratic on the conical end of M ; and only a finite set
of conical Lagrangians, specified a-priori, is chosen as objects of the Wrapped Fukaya category.
However, given any finite set of conical Lagrangians, the transversality condition on the Hamil-
tonian chords between the Lagrangians can be achieved by a Hamiltonian perturbation of these
conical Lagrangians, so this is not a constrant; and moreover, the condition of strong nonde-
generacy implies that there exist a finite number of conical Lagrangians which generate the
category in the sense that adding any other conical Lagrangian to the category does not change
its category of twisted complexes. Since the truth of Theorem 3 only depends on isomorphism
class of the category of perfect complexes of the Wrapped Fukaya category, these choices for the
definition of the Wrapped Fukaya category do not affect our results.

3.1.6 Open-closed map

In this section we describe in detail one component of the open closed map [1], [17]

OC : Cnu∗−n(WF (M))→ SC∗(M). (60)

Specifically, in Section 3.2 M will be a product of a Liouville domain with its opposite, and
the object ∆ ∈WF (M) will have as underlying Lagrangian the graph of the identity map. We
will describe how to define OC on

Hom∗(∆,∆) ⊂ Cnu∗ (WF (M)). (61)

Let D ⊂ C be the unit disk, let p+ = 1 be a positive boundary marked point and let p− = 0
be a negative boundary marked point. Define a negative cylindrical end at p− by

ε− : (−∞, 0]s × S1
t

ε−(s, t) = e(s−1)+i(2πt+π)
(62)

and choose a positive strip-like end ε+ at p+ with image disjoint from that of ε−. Write

D1|1 = D \ {p±} (63)

and choose data

α ∈ Ω1(D1|1)

J ∈ C∞(D1|1,J (M))

H ∈ C∞(D1,1,H(M))

(64)

and satisfying

Assumption 3. • The restriction of α to ∂D1|1 vanishes;

• The 1-form α satisfies dα ≤ 0 relative to the trivialization of Ω2(D1|1) coming from the
standard symplectic form on the disk;
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• Thinking of H ⊗α as a Hamiltonian-valued 1-form, and writing Xα for the corresponding
Hamiltonian-vector-field-valued 1-form, one has that the data (H,α, J) are compatible
with the Floer data (H∆, J∆) chosen for ∆ in the sense that

(ε∗+Xα)(s, t) = H∆(t), (ε∗+J)(s, t) = J (∆)(t); (65)

• Writing Xα as before, one has that the data (H,α, J) are compatible with the closed-string

Floer data (HS1

, JS
1

) used to define symplectic cohomology, in the sense that

(ε∗−Xα)(s, t) = HS1

(t), (ε∗−J)(s, t) = J (S1)(t); (66)

Given (α, J) as in 64 satisfying Assumption 3 and elements y+ ∈ C(L∆, L∆, H
∆), y− ∈

C(HS1

), one write Xα for the vector field valued 1-form associated to H ⊗ α and uses it to
define the moduli space

M1|1(y−, y+) =

 (du−Xα)0,1
J = 0

u ∈ C∞(D1|1,M) u(∂D1|1) ⊂ L(∆)
lims→±∞ ε±u = y±

 (67)

with Gromov-Floer bordificationM1,1
(y−, y+). Standard transversality and compactness argu-

ments show:

Lemma 8. For generic choices of (α, J) satisfying Assumption 3, the spaces M1|1(y−, y+) of
Eq. 67 are disjoint unions of smooth manifolds of expected dimension, and their Gromov-Floer

bordifications M1,1
(y−, y+) are compact. Moreover, given any y+ ∈ C(L∆, L∆, H

∆), the space
M1|1(y−, y+) is empty for all but finitely many closed orbits y−.

Choosing (α, J) so that Lemma 8 applies, one defines OC on Hom∗(∆,∆) by the equation

OC([y+]) =
∑

y−∈C(HS1 )

∑
u∈M1|1

(y−,y+)
indu=0

[y−]. (68)

The following proposition is the main result of [17]:

Proposition 5. The map defined in Eq. 68 admits an extension to a map of∞-mixed complexes

OC : Cnu∗−n(WF (M))→ SC∗(M).

The degree zero term of the map OC of the map of Proposition 5, i.e. the underlying map
of chain complexes, may or may not be an equivalence.

Definition 11. We say that M is nondegenerate when the map OC of Proposition 5 is a
quasi-isomorphism.

One has the following fundamental result

Proposition 6. ([7, Theorem 1.4], see also [18]) If M is a Weinstein domain then it is non-
degenerate.

Remark 9. The combination of Proposition 5 and Proposition 6 shows that the negative/periodic/cyclic
symplectic cohomology described above are invariants of the Wrapped Fukaya category of a Li-
ouville domain. In [31], Zhao introduces a different variant of periodic symplectic cohomology
(SH∗∞, 2S1)∗ which satisfies a localization theorem: in fairly general circumstances, one has an
isomorphism

(SH∞,2S1 )∗ ' H∗(M)((u)). (69)

Such a localization theorem cannot hold for the version of periodic symplectic cohomology used
in this paper. Indeed, subcritical handle surgery on M can easily change the cohomology of M
but leaves the Wrapped Fukaya category unchanged [18], thus changing the right hand side of
(69) while leaving the left hand side the same.
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3.1.7 Homology units

The final moduli space we describe in this preliminary section is the moduli space giving rise to
homology units (Defintion 2) in the Wrapped Fukaya category.

Let ∆ be an object of the category WF (M) with underlying Lagrangian L∆.
Equip the unit disk D ⊂ C with one negative boundary marked point p− = −1 and choose

a negative strip-like end ε− at p−. Define the Riemann surface

D−1 = D \ {p−} (70)

and choose data

α ∈ Ω1(D−1, C∞(M))

J ∈ C∞(D−1,J (M))

H ∈ C∞(D1,1,H(M))

(71)

satisfying

Assumption 4. • The restriction of α to ∂D1|1 vanishes;

• The 1-form α satisfies dα ≤ 0 (see 3)

• Thinking of H ⊗α as a Hamiltonian-valued 1-form, and writing Xα for the corresponding
Hamiltonian-vector-field-valued 1-form, one has that the data (H,α, J) are compatible
with the floer data (H∆, J∆) chosen for ∆ in the sense that

(ε∗−Xα)(s, t) = H∆(t), (ε∗−J)(s, t) = J (∆)(t); (72)

Given a pair (α, J) as in (71) satisfying Assumption 4, define for every y− ∈ C(L∆, L∆; y−),
the moduli space

M−1(y−) = {u ∈ C∞((D−1, ∂D−1), (M,L∆))|(du−Xα)0,1
J = 0; lim

s→−∞
ε∗−u = y−} (73)

where Xα is the vector-field valued 1-form associated to H ⊗ α, and write M−1
(y−) for the

Gromov-Floer bordification of the moduli space above. Standard compactness and transversality
theory proves the lemma below:

Lemma 9. For generic choices of (α, J) as in (71) satisfying Assumpotion 4, the spaces

M−1
(y−) are smooth manifolds of expected dimension and their bordifications M−1

(y−) are
compact.

Choosing (α, J) so that Lemma 9 applies, one defines

e∆ ∈WF (M)(∆,∆)

e∆ =
∑

y−∈C(L∆,L∆;H∆)

∑
u∈M−1

(y−)
indu=0

[y−]. (74)

A standard gluing argument proves the

Lemma 10. The element e∆ is a homology unit for ∆.
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3.1.8 Floer homology on product manifolds

Shortly, we will wish to study Floer theory on M × M−, where M is a Liouville manifold.
Unfortunately, there is a well-known technical difficulty that M̄×M̄− is a manifold-with-corners,
and thus not a Liouville domain. However, M ×M− does have a Liouville structure with the
radial coordinate

rM×M− = rM + rM−

and corresponding conical end
r−1
M×M−((ε,∞)).

With this choice of Liouville structure, M ×M− is a manifold with boundary that “smooths
the corners” ofM×M−. One can use this Liouville structure to defineWF (M×M−), SH∗(M,×M−);
however, with this definition these invariants will not obviously satisfy any “Kunneth Formulae”
because, for example, given a pair of Lagrangians L ⊂M,L− ⊂M− that are conical at infinity,
the product L×L− is not conical at infinity with respect to the Liouville structure of M ×M−.
However, for product Lagrangians, one has a natural choice of “split Floer data”: namely, one
requires that Hamiltonian terms in Floer’s equation are sums of Hamiltonian terms on M and
on M−, one requires that the almost complex structures are products, etc. The advantage of the
definitions using “split Floer data” is that Kunneth-type formulae are manifest. There are then
several approaches of compairing Fukaya categories defined using split Floer data with Fukaya
categories compatible with the Lioville structure on M ×M− which we will review in Section
3.2.3. For technical simplicity, we will use the split variant of the Wrapped Fukaya category
to define the Fukaya category of a product. In this section, we review what we need about
Fukaya-categorical constructions using split Floer data.

Write πM , πM− for the projections to the corresponding factor of M×M−. Given a choice of
closed-string Floer data (H,J) on M satisfying Assumptions 1 and 2, the symplectic cohomology
with the corresponding split Floer data is defined to be

SC∗split(M ×M−;π∗MH + π∗M−H, (J,−J))

in the sense that one uses the time-dependent Hamiltonian and almost complex structure

Hsplit = π∗MH + π∗M−H

Jsplit = J ⊕−J
(75)

in the definition of symplectic cohomology as in Section 3.1.2; even thought Hsplit and Jsplit are
not compatible with the Liouville structure on M ×M−, the definitions still make sense.

Symplectic cohomology then almost tautologically satisfies the Kunneth isomorphism

SC∗split(M ×M−;π∗MH + π∗M−H, (J,−J)) ' SC∗(M ;H,J)⊗ SC∗(M−;H,−J); (76)

every orbit of Hsplit is the product of an orbit of H on M and an orbit of H on M−, and the
map simply sends orbits of Hsplit to the tensor products of the corresponding orbits on M and
M−.

Using the same closed-string Floer data on M , one can define the Wrapped Floer homology
of the diagonal ∆ ⊂M ×M−

WC∗split(∆,∆;π∗M (Ht/2) + π∗M−H1−t/2; (J,−J)) (77)

which satisfies a “Kunneth formula”

WC∗split(∆,∆;π∗M (Ht/2) + π∗M−H1−t/2; (J,−J)) ' SH∗(M ;H,J). (78)

There is a corresponding constructions for the wrapped Floer homology of split Lagrangians

WC∗M×M−(L1 × L2, L
′
1 × L′2) 'WC∗M (L1, L

′
1)×WC∗M−(L2, L

′
2). (79)
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In [16, Section 8], Ganatra packages the split wrapped Floer homologies (77) and (79) into
an A∞ category W2 containing as objects the product Lagrangians L1 × L2 ⊂ M × M−,
possibly equipped with Pin structures and gradings, and also the (suitably decorated) diagonal
Lagrangian ∆L ⊂M×M−. Moreover, this category admits a cohomologically fully faithful A∞
functor

M :W2 →WF (M)−mod−WF (M). (80)

The functor M plays the role of the categorical Kunneth map in that paper.
Given a choice of the data (α, J,H), as described in Section 3.1.6, that is needed to define

the maps
OC : WF (M)∗(Li, Li)→ SH∗(M) (81)

for all objects Li ∈ WF (M), one has the data (α,−J,H) needed to define the corresponding
maps

OC : WF (M−)∗(Li, Li)→ SH∗(M−) (82)

OCsplit : WC∗M×M−(L1 × L2, L1 × L2)→ SC∗split(M ×M−). (83)

defined in the two equivalent ways: either by composing the isomorphisms 79 and (76) with the
tensor product of the maps (81) and (82), or alternatively by using the data (α, (J,−J), π∗MH+
π∗M−H) to define such a map using the moduli space (67) with target M ×M− exactly as in
Section 3.1.6 via the formula (68).

In Appendix 4, we show the

Proposition 7. The maps OCsplit defined in (83) extend to a chain map

OCsplit : C∗−2n(W2)→ SC∗(M ×M−).

3.2 Algebraic constructions

In this section address some technicalities about about K theory and the noncommutative chern
character, and then explain how to reduce the proof of 3 to a computation involving equivariant
symplectic cohomology.

3.2.1 Perfect complexes

In this section we briefly review the notion of perfect module over an A∞-category A.
There is an A∞ category Mod(A) of right A∞ modules over A. Its cohomology cat-

egory H0(Mod(A)) is a Karoubi-complete triangulated category. We say that an element
X ∈ H0(Mod(A)) is perfect if it is isomorphic in H0(Mod(A)) to an image of a projector
p ∈ End(X ′), where X ′ ∈ H0(Mod(A)) is isomorphic to an iterated cone on A ∈ H0(Mod(A)).
We say that X is generated by some other elements of H0(Mod(A)) if it is isomorphic to an
iterated cone on sums of those elements. The A∞ category Perf(A) is the full A∞ subcategory
of Mod(A) with objects those which lift perfect objects of H0(Mod(A)).

Given a quasi-equivalence φ : A′ → A between A∞ categories A′, A, we have a pullback
A∞-functor φ∗ : ModA → ModA′ and corresponding triangulated functor φ∗ : H0(ModA) →
H0(ModA′). It is a theorem that the pullback of a perfect module by a quasi-equivalence φ is
perfect, and that the restriction

φ∗ : H0(PerfA)→ H0(PerfA′)

is an equivalence of triangulated categories, and thus

φ∗ : PerfA→ PerfA′

is a quasi-equivalence.
The group K0(A) is the K-group of the triangulated category H0(Perf(A)).
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Remark 10. Efimov states conjecture 2 when A is a dg-algebra, rather than an A∞ category, and
nominally uses the definition of K0(A) as the Waldhausen K group of the Waldhausen category
of cofibrant perfect A modules. When we work over a field there is no cofibrancy assumption;
moreover, this definition gives the same group as the one described above.

3.2.2 The noncommutative chern character

In this section we recall the definition of the noncommutative chern character. Given a unital
A∞ algebra A and a perfect unital A-module M , recall that Shklyarov, in [27], defines the
noncommutative Chern character ch(M) to be the image of the unit morphism of M in the
cyclic bar complex of Perf(A). An similar definition is given in [26, Definition 5.13] for c-unital
categories: namely, the definition of ch(M) for perfect modules M over c-unital categories A is
the image of the cohomological unit of M in the cyclic bar complex of Perf(A). This agrees with
Skhlyarov’s definition, since unital A∞ categories are c-unital, and moreover, by Proposition 2,
c-unital categories A admit homotopy units

φ : A→ A′,

which induce maps
φ∗ : Perf(A)→ Perf(A′),

φ∗ : C•(A)→ C•(A
′)

and the image of a cohomological unit for M ∈ Perf(A) in HH∗(A) is sent, under the induced
map φ∗ : HH∗(A)→ HH∗(A

′) to the image of a strict unit for φ∗M . Finally, this notion of of
the noncommutative chern character generalizes Connes’ definition of the Chern character map
for projective modules M over associative algebras [22]. It is a theorem that the noncommutative
chern character of M descends to its class in K0(A).

Remark 11. Efimov cites [8] for his definition of the chern character, which is rather inexplicit.
It is (presumably) obvious to experts that the definition given by Shklyarov agrees with all
other definitions. In the calculations in his paper he just uses Shklyarov’s definition, (or rather,
the image of Skhlyarov’s definition in the reduced bar complex,). In any case, in our paper
we simply interpret conjecture 2 using Shklyarov’s definition, which is consistent with Efimov’s
computations.

There is a Kunneth map

K : HH∗(WF (M)−mod−WF (M))→ HH∗(WF (M))⊗HH∗(WF (M)op) (84)

which can be defined as follows. Let WF (M)L and WF (M)R be the categories of Yoneda
images of objects of WF (M) in the dg-category of left or right A∞ modules over WF (M),
respectively. Inside the bimodule category WF (M) −mod −WF (M), which is a dg-category,
there is the subcategory WF (M)L⊗kWF (M)R of tensor products of elements of WF (M)L and
WF (M)R; this isomorphic to the tensor product of the dg-categories WF (M)L and WF (M)R,
and is Morita-equivalent to WF (M) −mod −WF (M) via the inclusion. The map K is then
the composition of the isomorphism

HH∗(WF (M)−mod−WF (M))→ HH∗(WF (M)L ⊗k WF (M)R)

induced by the Morita equivalence, with the standard Kunneth map for the tensor product of
dg algebras, together with the Yoneda isomorphisms

YL : WF (M) 'WF (M)L (85)

YR : WF (M)op 'WF (M)R (86)
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3.2.3 Reducing the conjecture to symplectic cohomology

We now explain how to compare the maps of (21) and (22), at least on the diagonal. See
Appendix ?? for a discussion regarding different definitions of opposite categories.

We wish to prove the following

Proposition 8. If M is strongly nondegenerate, then image of the diagonal bimodule under the
map (21) is zero if and only if the image of the diagonal Lagrangian under the map (22) is zero.

First, as stated in section 3.1.8, there is a cohomologically full and faithful functor [16]

M :W2 →WF (M)−mod−WF (M). (87)

Moreover, [16] proves that this sends the diagonal Lagrangian to the diagonal bimodule, and
sends product Lagrangians L1×L2 to the tensor products of the corresponding Yoneda modules

YL(L1)⊗ YR(L2) ∈WF (M)L ⊗k WF (M)R. (88)

The first order term of the A∞ functor M induces a map

SH∗(M) = HomW2(∆,∆)→ HomWF (M)−mod−WF (M)(∆,∆) = HH∗(WF (M)) (89)

where the first equality is the Kunneth isomorphism (78) and the last equality is the definition
of Hochschild cohomology. By [16], this map agrees on homology with the open-closed map [? ],
and this map is a ring isomorphism whenever M is nondegenerate. This, the image of the unit
for diagonal Lagrangian, is sent to the unit of the diagonal bimodule, 1∆ ∈ HH∗(WF (M)), by
M .

The functor M and the Kunneth map on Hoschild homology induce the following diagram:

HH∗(W2) HH∗(WF (M))⊗HH∗(WF (M)op)

SH∗(M ×M−) SH(M)⊗ SH(M−).

K◦M

OC OC⊗OC (90)

The top left-corner contains the unit of the diagonal Lagrangian, which is sent by the top arrow
to K ◦ ch0(∆) by the previous discussion. Because vertical maps OC on the right extend to
equivalences of ∞-mixed complexes, we have the immediate

Lemma 11. If the diagram (90) commutes then Proposition 8 holds .

Unfortunately, it is technically elaborate to check that the above diagram commutes. Some
comments which indicate possible methods for checking the comutativity of the above diagram
can be found in Remarks ??, ?? of [16]. Furthermore, there are other diagrams of this sort that
one might write down which would suffice to prove Propostion 8; for example, one could use
the Kunneth map defined in [18]. We will content ourselves with giving a proof of Proposition
8 under the strong nondegeneraccy assumption, by proving that

OC(1∆) = OC ⊗OC ◦K ◦ ch0(∆).

Indeed, ∆ ∈ K0(WF (M)−mod−WF (M)) is a linear combination of the classes of the Yoneda
bimodules, so ch0(∆) is a linear combination of the images of the units of the Yoneda bimodules
on Hochschild homology. Therefore, to prove the above it suffices to check that

OC(ch0(L1 × L2)) = OC ⊗OC ◦K ◦ ch0(YL(L1)⊗k YR(L2)). (91)

Now, The first order term of M applied to L1 × L2 also induces maps

WFM (L1, L1)⊗WFM−(L2, L2) = EndW 2(L1 × L2)
M−→

EndWF (M)−mod−WF (M)(YL(L1)⊗k YR(L2)) 'WF (M)(L1, L1)⊗WF (M−)(L2, L2)
(92)
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where the first equality is coming from the fact that W 2 is defined using split floer data, and
the last equality follows from the (algebraic!) Kunneth formula for endomorphisms of Yoneda
bimodules. All of these maps are unital maps. The fact that OC respects the first Kunneth
isomorphism in (92) by (83) then proves (91). This concludes the proof or Proposition 8.

3.2.4 Opposite ends, Hamiltonians, and forms

In this completely elementary section, we carefully explain how to think of SH∗(M−) as defined
using Floer trajectories in M , as well as a certain relation between positive and negative ends
of holomorphic curves, as preparation for the core argument in Section 3.3.

Let Ht, Jt be the closed-string Floer data (29) chosen to define symplectic cohomology of M .
Then the maps defining the differential satisfy Floer’s equation on M with Hamiltonian term
Ht, which in our conventions can be written in local coordinates as

u : Rs × S1
t →M, ∂su+ Jt(∂tu−XM

H ) = 0

where we have introduced the notation XM
H to denote the Hamiltonian vector field associated to

H using the symplectic form of M . In section 3.1.8, we use the Floer data (Ht,−Jt) to define the
symplectic cohomology SH∗(M−;Ht) of M−. Then the maps defining the differential satisfy
the equation

u : Rs × S1
t →M− = M, ∂su− Jt(∂tu−XM−

H ) = ∂su− Jt(∂tu−XM
−H) = 0. (93)

Given a solution u of (93), the map ũ(s, t) = u(−s, t) solves the Floer equation on M with
Hamiltonian −H, and the differential for SH∗(M−;Ht) counts such maps to M in the sense
that the differential of an orbit y− of −Ht on M is given by a sum of solutions u to

∂su+ Jt(∂tu−XM
−H)

with the coefficient of y+ given by the count of solutions u with

lim
s→±∞

u(s, t) = y±

which are the opposite asymptotics from what our conventions would dictate for the definition
of the hypothetical group SH∗(M ;−H).

Now, consider a solution to Floer’s equation on M with Hamiltonian term −Ht on a positive
end:

u : [0,∞)s × S1 →M, ∂su+ Jt(∂tu−XM
−H).

We can equivalently think of this as a solution to Floer’s equation on M with Hamiltonian term
Ht on a negative end,

u : (−∞, 0]s × S1 →M, ∂su+ Jt(∂tu−XM
H )

via the (holomorphic!) identification ū(s, t) = u(−s,−t).

3.3 A sequence of bordisms

The arguments of Section 3.2.3 show that the conjecture follows by showing that image of the
diagonal Lagrangian ∆ ⊂M ×M− under the map

K0(WF (M ×M−))
ch−→ HH∗(WF (M ×M−))

OC−−→ SH∗(M ×M−)

= SH∗(M)⊗ SH∗(M−)→ SH∗(M)⊗ (SC∗S1)∗(M−).
(94)

is zero. Let
K : SH∗(M ×M−)→ SH∗(M)⊗ SH∗(M−) (95)
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denote the Kunneth map. There is a canonical “acceleration” map

aM : H∗(M)→ SH∗(M) (96)

for any Liouville manifold M . [23, Section (3e)]. We choose the closed-string Floer data needed
to define SH∗(M) as in ((37), see also Lemma 7) then the acceleration map is just the inclusion
of the constant orbits of H|M .

We begin by proving

Lemma 12. The element

K(OC(ch(∆))) ∈ SH∗(M)× SH∗(M−) (97)

lies in the image of

aM ⊗ aM− : H∗(M)⊗H∗(M−)→ SH∗(M)⊗ SH∗(M−), (98)

where aM , aM− are the acceleration maps of (96).

Proof. Recall that we are using split Hamiltonians for the definition of SH∗(M ×M−) and of
WF (∆,∆) as in Section 3.1.8. Let (H,J) be the choice of closed-string Floer data used to define
SH∗split(M ×M−) and WF (∆,∆). Write

(y1, y2) ∈ C(Hsplit) (99)

for a general pair of Hamiltonian orbits of H on M and on M−, respectively, corresponding to
a single Hamiltonian orbit of Hsplit = π∗1H + π∗2H on M ×M−.

The gluing theorem for solutions to the inhomogeneous pseudoholomorphic map equations,
together with definition of open-closed map (see Sections 3.1.6 and 3.1.8) and the cohomological
unit ch(∆) (see Sections 3.2.2 and 3.1.7) show that there exists

α ∈ Ω1((−∞, 0]× S1, C∞(M ×M−)),

Jα ∈ C∞((−∞, 0]× S1,J (M)× J (M−))
(100)

satisfying
α(s, t) = (π∗1H + π∗2H)⊗ dt for s << 0

Jα(s, t) = (J,−J) for s << 0dα ≤ 0
(101)

such that the moduli space

Mglued(y1, y2) =

 (du−Xα)0,1
Jα

= 0
u = (u1, u2) : (−∞, 0]× S1 →M ×M− u(0, ·) ∈ ∆

lims→−∞ uj(s, t)) = yj , j = 1, 2


(102)

is a smooth manifold (with underlying topology induced by the inclusion into the space of
smooth maps u), such that K(OC(ch(∆))) is equal to the finite sum∑

(y1,y2)∈C(Hsplit)

∑
u∈Mglued(y1,y2)

ind(Du)=0

[y1]⊗ [y2]. (103)

(where ind(Du) denotes the index of the linearized Cauchy-Riemann operator associated to an
map u).

Now, we will choose certain auxiliary data to construct a bordism from Mglued to a moduli
space that is easy to understand. We will choose a

φ ∈ C∞(R, [1,−1])

Jφ ∈ C∞(R× S1, J(M))
(104)
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such that
φ(s) = 1 for s << 1

φ(s) = −1 for s >> 1

Jφ(s, t) = J for |s| >> 1

φ([−1, 1]) = 0

∂sφ ≤ 0

(105)

together with a smooth family, ranging over τ ∈ [0, 1] of data

βτ = (βτM , β
τ
M−) ∈ Ω1((−∞, 0]× S1, C∞(M ×M−))

Jτβ ∈ C∞((−∞, 0],J (M)× J (M−))
(106)

such that
β1 = α,

β1
M (s, t) = φ(s)Hdt,

β1
M−(s, t) = −φ(−s)Hdt,

Jτβ (s, t) = (J,−J) for s << 0

J1
β(s, t) = (Jφ(s, t),−Jφ(−s, t))

dβτ ≤ 0 for all τ.

(107)

Given such data we may consider the moduli spaces

Mbordism(y1, y2) =


τ ∈ [0, 1] (du−Xβτ )0,1

Jτβ
= 0

u = (u1, u2) : (−∞, 0]× S1 →M ×M− u(0, ·) ∈ ∆
lims→−∞ uj(s, t) = yj for i = 1, 2


(108)

and

Mfinal(y1, y2) =


(du− φXH)0,1

Jφ
= 0

u : R× S1 →M lims→−∞ u(s, t) = y1(t)
lims→∞ u(s, t) = y2(t)

 (109)

where we think of φ as a function on R × S1 via pullback from the first factor. We have the
subspace

Mbordism
1 (y1, y2) := {((τ, u) ∈Mbordism(y1, y2)|τ = 1}. (110)

There is a map

F :Mfinal(y1, y2) 3 u 7→ F (u) = (τ, (u1, u2)) ∈Mbordism
1 (y1, y2)

τ = 1

u1(s, t) = u(s, t)

u2(s, t) = u(−s, t).

(111)

For each ofMglued(y1, y2),Mbordism(y1, y2), andMfinal(y1, y2), write ind(Du) for the index
of the linearized Cauchy-Riemann operator of an inhomogeneous map u in the moduli space.

We have the elementary

Lemma 13. The map F is a bijection.

Proof. The inverse to F is given by

u(s, t) =

{
u1(s, t), s ≤ 0
u2(−s, t) s ≥ 0
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To show that this is an inverse, it suffices to check that the map u defined above is smooth. For
s ∈ (−1, 1), both cases of the definition of u above satisfy

∂su+ Jφ∂tu = 0

Moreover, the t-derivatives of both cases of the definition of u agree, so their s derivatives must
as well; an inductive argument shows that u is indeed smooth, and thus F has an inverse.

We will think of the moduli spacesMfinal(y1, y2) andMbordism(y1, y2) as equipped with the
topology induced by their inclusion into spaces of smooth maps (together with a factor of [0, 1]τ

forMbordism
). Standard transversality methods [12], the maximum principle (forMfinal) [23],

and the integrated maximum principle (for Mbordism) [2], prove the following

Proposition 9. There exist choices as in (104) and (106), satisfying the constraints (??), (??),
such

• The elements of Mfinal for which ind(Du) = 0 are a finite discrete set;

• The elements Mbordism for which ind(Du) = −1 are a finite discrete set;

• The connected components of Mbordism for which ind(Du) = 0 form 1-manifolds, with
Gromov-Floer compactification given by adding the elements of

M((y1, y2), (y′1, y
′
2))×Mbordism(y′1, y

′
2)

where the first factor refers to the Floer moduli space (33) defining SC(M ×M−) with the
split Floer data, ranging over all (y′1, y

′
2) ∈ C(Hsplit), for which the index of the linearized

Cauchy riemann operator of the first term is 1 and for the second is −1; as well as the
elements of

Mfinal(y1, y2) and Mglued(y1, y2)

for which ind(Du) = 0.

The above proposition then shows that K(OC(ch(∆))) is cohomologous to∑
(y1,y2)∈C(Hsplit)

∑
u∈Mfinal(y1,y2)

ind(Du)=0

[y1]⊗ [y2] (112)

via a cocycle given by the count of elements of Mfinal(y1, y2) for which ind(Du) = −1.
We now argue that for action reasons, the above element is in the image of the acceleration

map, i.e. consists of constant orbits. Indeed, we have the usual inequality of geometric and
topological energies, which in our conventions reads

0 ≤
∫
R×S1

|du|2Jφ ≤ AH(y1)−A−H(y2) +

∫
φ′(s)Hdsdt ≤ AH(y1)−A−H(y2);

see (38) for the definition of AH(x). By Lemma 7, the right hand side is strictly negative unless
y1 and y2 are constant orbits.

So the topological energy, and thus the geometric energy, must both be zero, and the elements
u ∈Mfinal(y1, y2) contributing to the sum in (112) must all be constant maps, which can only
asymptote to constant orbits. So the sum of (112) is in the image of the acceleraiton map.

Remark 12. It is straightforward to adapt this argument to non-split floer-theoretic invariants.
In that case, the Kunneth map on symplectic cohomology becomes a certain continuation map
(see ??); after gluing, one again gets a bijection between terms of K(OC(ch(∆))) and certain
maps into M with a seam on 0 × S1 labeled by a Lagrangian boundary condition; using a
parameterized moduli space, one then performs a bordism to make all the Floer data near this
seam be split as in the above proof, after which bootstrapping an analytic continuation allow
one to remove the seam.
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But now we state a lemma, essentially proven in [17, Section 4.4], and for convenience recall
the proof:

Lemma 14. The composition of the acceleration map and the Connes map

δ ◦ a : H∗(M−)→ (SC−S1)∗(M−) (113)

is zero.

Proof. We must first review one more fact about the Connes map from the homology to the
negative-cyclic homology of a mixed complex M ; namely, it is the boundary map of the exact
sequence of complexes [22, Equation 5.1.4.2]

M((u))
u−→M((u))→M((u))/uM((u)) = M

which a short calculation shows is the zero map whenever the map

δ : M →M((u)), y 7→
∑
k≥1

uk−1δky

is zero.
Recall that we are using closed-string Floer data as in Lemma 7, and so the constant orbits

form a subcomplex of SC∗(M) ⊗ SC∗(M−). By Proposition 4, we may have chosen the Floer

data for the S1 action to be independent of of p ∈Mk inside M
−

. The maps

δk : SC∗(M−;H,−J)→ SC∗(M−;H,−J) (114)

are action-nondecreasing, and so must preserve the subcomplex of constant orbits, since those
are the only ones with positive action (Lemma 7). In fact, each of these maps must be zero for
k ≥ 1, since the corresponding moduli spaces (54) cannot have zero-dimensional components –
given an element (u, p) ∈Mk(y−, y+) with y−, y+ constant orbits, any other choice of p′ ∈Mk

will give an element (u, p′) ∈ Mk(y−, y+) (Figure 6). Since the image of the acceleration map
is exactly the constant orbits, and the map

δ : SC∗(M)→ (SC−S1)∗(M) (115)

is
y 7→

∑
k≥1

uk−1δky, (116)

this proves the proposition.

Combining the lemmata of this section, we see that we have proven Theorem 3.

4 Split open-closed map

In this section we outline the construction of the split open-closed map, the existence of which
is mentioned in Remark 11.1 of [16].

In [16], Ganatra defines moduli spaces of genus-0 open-closed strings

N I,K̃
h,n,~m, ~m = (m1, . . . ,mh), I ⊂ {1, . . . , n}, K̃ = (K1, . . . ,Kh),Kj ⊂ {1, . . . ,mj}

which parametrize complex spheres with h disjoint disks removed, n interior marked points, mj

boundary marked points on the j-th boundary component of the Riemann surface, the interior
marked points labeled by I and the boundary marked points on the j-th component labeled
by Kj declared to be negative. He imposes the constraint that there is at most one negative

31



interior marked point or at most two negative boundary marked points. He then defines notions
of Floer data for genus-0 open-closed strings, as well as compactifications

N I,K̃

h,n,~m

of these moduli spaces.
Let

Rn,1,Rn,1

denote the moduli space of disks with n positive boundary marked points and one negative
interior marked point, and its Gromov compactification, respectively. We will label the marked
points p1, . . . , pn running counterclockwise. Suppose that we have chosen a Lagrangian labeling
L = (L1, . . . ,Ln) with each Li equal either to a product Lagrangian L1

i ×L2
i ⊂M ×M− or the

diagonal Lagrangian ∆ ⊂M ×M−. Given a disk C ∈ Rn,1, we think of each Li as labeling the
component ∂iC of the boundary of C \ {p1, . . . , pn} lying in between the marked points pi and
pi+1, with pn+1 = p1 by convention. Then there is a map

φL : Rn,1 → N IL,K̃L

hL,nL,~mL

for certain data IL, K̃L, hL, nL, ~mL determined by L, defined by gluing pairs of disks as follows.
(The analogous map for the case where the domain is the associahedron is defined in Section
7 of [16] and is used to define the A∞ operations on the category W2 defined therein.) Given
a representative C of a point [C] ∈ Rn,1, let C̄ denote the same disk but with the opposite
complex structure and the interior negative marked point now thought of as a positive marked
point. The map φL assigns to [C] the isomorphism class of a genus-zero open-closed string,
denoted by

C ∪∆ C̄

constructed by partially gluing C to C̄ along their boundaries: if x ∈ ∂iC and Li = ∆ then x is
identified with x in ∂C̄, and boundary marked points of C are identified with the corresponding
boundary marked points of C̄. The boundary marked points of C that lay in between two
boundary components labeled by ∆ now appear as interior marked points of C ∪∆ C̄, and are to
be considered negative; the remaining boundary marked points continue to appear as boundary
marked points of C ∪∆ C̄ and are also considered negative. Finally, let p−0 and p+

0 denote the
two interior marked points of C ∪∆ C̄ coming from the interior marked points of C and C̄
respectively; they are respectively considered to be negative and positive interior marked points
of C ∪∆ C̄.

An inductive argument involving the compactifications of the domains and codomains of the
φL shows that

Lemma 15. φL extends to a continuous map

φL : Rn,1 → N IL,K̃L

hL,nL,~mL .

Now, Ganatra defines a notion of Floer data (Definition 4.11) FS for an open-closed string S,
given by weighted strip and cylinder data S, a sub-closed one form αS , a primary Hamiltonian
HS : S → (H)(M), an S-adapted rescaling function aS , an almost complex structure JS , and
an S1-perturbation FS , all satisfying mutual compatibility conditions as well as compatibility
conditions with the background choice of closed-string Floer data (Ht = H + Ft, Jt) made as
in Lemma 7. Given an identification of positive marked points of one open-closed string and
corresponding negative marked points of another open-closed string, one can glue Floer data
chosen for each of the open-closed string as in Section ??.

A universal and consistent choice of split Floer data for the moduli spaces Rn,1 is a choice

of Floer data for every element of every Rn,1 equipped with every possible choice of Lagrangian

labels L such that the Floer data vary smoothly over each Rn,1 and such that the Floer data

32



associated to the boundary strata of Rn,1 agree to infinite order in the gluing coordinates near
the boundary strata with the the Floer data obtained by gluing the Floer data associated to
the disks representing the points in the boundary strata.

Given a Floer datum for an open-closed string S, one can consider the set of maps

u : S →M

satisfying the Floer-type equation

(du−XS ⊗ αS)0,1

with asymptotic and boundary conditions defined by the rescaling function and the weighted
strip and cylinder data, and where XS is the S-dependent Hamiltonian vector field corresponding
toHS+FS . We wish to modify, slightly, the equation defining the moduli spaces that we consider.

If S = φL([C]) for some C ∈ Rn,1, we will let p+
o and p−o the positive and negative interior

marked points of S arising from doubling the unique interior marked point of C, respectively.
The Floer datum for S provides us with a positive cylindrical end δp−o : [0,∞)× S1 → S, along

with a weight η > 0, associated to p+
o . We choose, once and for all, a smooth function

τ : [0,∞)→ [1,−1]

such that
τ |[0,1] = 1; τ |[2,∞] = 0, τ ′ ≤ 0;

with all derivatives bounded. From the definition of a Floer datum we get that

δ∗
p−o
XS ⊗ αS =

(ψη)∗XHt

η
⊗ dt

where ψη is the flow for time log(η) of the Liouville vector field of M . We let ˜XS ⊗ αS denote
the Hamiltonian-vector-field-valued one-form on S (associated to the implicitly defined function
H̃S : S → C∞(M)) which agrees with XS ⊗ αS away from the image of δp−o , and satisfies

δ∗
p−o

˜XS ⊗ αS = τ(s)
(ψη)∗XHt

η
⊗ dt.

Suppose now that we have chosen a universal and consistent choice of split Floer data for
the moduli spaces Rn,1.

Given an element C ∈ Rn,1 with boundary marked points p1, . . . , pn, Lagrangian labels L,
and writing S = φL(C), we will say that a boundary marked point pi succeeds Li−1 and precedes
Li, with the indices written cyclically so L0 = Ln. We will write wk for the weight associated to
the end corresponding to pk by the Floer data chosen for C, and w± for the weights associated
to p±0 . Given a Hamiltonian G on a symplectic manifold M , we will write CM (G) for the
time-1 orbits of the Hamiltonian, and given Lagrangian submanifolds L and L′, we will write
CM (L,L′;G) for the time-1 chords of G starting at L and ending at L′. There are isomorphisms

CM (G) ' CM (G/ρ ◦ ψρ),

CM (L,L′;G) ' CM (ψρL,ψρL′;G/ρ ◦ ψρ).
We let d1, . . . , drd ∈ {1, . . . n} denote the indices of boundary marked points lying in between
two boundary components labeled by ∆; for each index, say we have choices

xdj ∈ C(∆,∆) := CM (Ht).

Let a1, . . . , ara be the indices of boundary marked points succeeding ∆ and preceding a product
Lagrangian; for each index, say we have choices

yaj ∈ C(∆, L1 × L2) := CM (L1, L1;Ht).
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Let b1, . . . , brb be the indices of points preceding ∆ and succeding a product Lagrangian; for
each index, say we have choices

ybj ∈ C(L1 × L2,∆) := CM (L1, L2;Ht).

Finally, let c1, . . . cd be the indices of the remaining boundary marked points, which must lie in
between two product Lagrangians. For each index, say we have choices

ycj = (y1
cj , y

2
cj ) ∈ C(L1 × L2, L

′
1 × L′2) := CM (L1, L

′
1;Ht)× CM (L2, L

′
2;Ht).

These choices correspond to a set of choices

zi ∈ C(Li−1,Li), i = 1, . . . , n

Say we also have choices
x− ∈ CM (Ht), x+ ∈ CM−(Ht).

Write εk or δk for the strip-like or cylindrical positive end associated to the marked point of S
coming from pk ∈ ∂C; and write δ± for the positive/negative cylindrical end associated to the
marked points p−o , p

+
o ∈ S arising from doubling the interior marked point of C.

Define the moduli space

Rn,1({xj}, {yj};x−, x+) = Rn,1∗ (z1, . . . , zn;x−, x+)

to be the collection of maps

u : S →M ;S = φL(C);C ∈ Rn,1

such that
(du− ˜XS ⊗ αS)0,1 = 0

and satisfying the boundary and asympotic conditions

lim
s→+∞

u ◦ εk(s, t) = ψwkyk(t), k = a1, . . . , ara , b1, . . . , brb , c1, . . . , crc ;

lim
s→+∞

u ◦ δk(s, t) = ψwkxk(t), k = d1, . . . , drd ;

lim
s→+∞

u ◦ δ+(s, t) = ψw+x+(t);

lim
s→−∞

u ◦ δ−(s, t) = ψw−x−(t);

u(z) ∈ φaS(z)Lα, α ∈ π0(∂S).

The topological energy of any solution u is given by∫
S

ω − d(u∗(H̃S))αS

which is equal by Stokes theorem to∑
j

A(yaj ) +
∑
j

A(bj) +
∑
j

A(cj)−A(x−) +A(x+)

which upper bounds the (nonnegative) geometric energy of a solution. Here the above terms
are defined exactly as in [16, (A.8), (A.11)], except that A(x+), due to the modification we
have made to Floer’s equation, is taken to be (A.11) with the terms H and Ft replaced by their
negatives.
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In particular, because of Lemma 7, the topological energy is actually upper bounded by∑
j

Ayaj +
∑
j

A(bj) +
∑
j

A(cj) +K (117)

for some constant K > 0. Now, we have the following πr denote an extension of the collar
coordinate of the collar of M to a function

πr : M → [0,∞)

Proposition 10. Given an element of Rn,1({xj}, {yj};x−, x+) there is a constant C depending
only on {xj}, {yj}, x−, x+ such that

πr ◦ u ≤ C.

Proof. One may follow the proof as in [16, Theorem A.1], except that one redefines the unper-
turbed region Su to not include the image of the strip-like end associated to p+

0 . On the image
of the strip-like end associated to p+

0 , we have chosen our Floer data explicitly so that Floer’s
equation takes the form of the continuation map equation between the Floer homology groups
SH∗(−H ′) and SH∗(H ′) for a Hamiltonian H ′; and the maximum principle argument as in [23]
suffices to prove compactness in that region.

By Gromov compactness, the above proposition, and the bound in (117)

Proposition 11. Fixing {xj}, {yj} as in the above proposition, the number of x− ∈ CM (Ht)), x+ ∈
CM−(Ht) for which Rn,1({xj}, {yj};x−, x+) is nonempty is finite.

The salient point of the above proposition is that although p̄0 is a positive marked point, we
wish to think of it as an output of the open-closed map, because it arises artificially from the
negative marked point p̃ via the doubling construction.

The standard inductive construction of Floer data works in our setting and we have the

Proposition 12. Universal and consistent choice of split Floer data for the moduli spaces Rn,1

exist. Moreover, given the choices needed to define the split open closed maps (83) (which

Chose split Floer data as in the above proposition. Recall the Kunneth map for symplectic
cohomology with split Floer data, together with the isomorphism

SC∗(M−) ' SC∗(M,−H)

described in section 3.2.4. We then define

OC : Cnu∗−2n(W2)→ SC∗(M ×M−)

via the formula

OC(z1 ⊗ . . .⊗ zn) =
∑

(x−,x+)∈C(Hsplit)

∑
u∈Rn,1∗ (z1,...,zn;x−,x+)

ind(Du)=0

[x−]⊗ [x+]

(where ind(Du) is of course the index of the linearized Cauchy-Riemann opeator of u).

The continuity of φ and the standard argument based on the combinatorics of Rn,1 showing
that the open-closed maps defined in [], [] are chain maps show that OC is in fact a chain map.
This proves Proposition 7
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5 Appendix: Proof of proposition about homotopy units

This proof is written in the convention for A∞ categories of [25] rather than the one we use in
this paper; as we are currently working in characteristic 2, the proof goes through as written,
but see Appendix 6 for a description of how to convert the proof to the conventions used in the
rest of this paper.

Proof of Proposition 2. Recall that a formal diffeomorphism of an A∞category A with A∞
operations µdA is an arbitrary sequence of maps

Φd : homA(Xd−1, Xd)⊗ . . .⊗ homA(X0, X1)→ homA(X0, Xd)[1− d] (118)

such that Φ1 is a linear automorphism. The difeomorphism Φ defines a new A∞ structure
Φ∗A = µ1

Φ∗A
, µ2

Φ∗A
, . . . on the linear category A; the new operations are computed as the

solution to the system of equations∑
r

∑
s1,...,sr

µrΦ∗A(Φsr (ad, . . . , ad−sr+1), . . . ,Φs1(as1 , . . . , a1)) =

∑
m,n

(−1)∗Φd−m+1(ad, . . . , an+m+1, µ
m
A (an+m, . . . , an+1), an, . . . a1)

(119)

where (−1)∗ is a certain Koszul sign [25, Section I.1c]. This makes Φ into an A∞ functor between
A equipped with the original A∞ structure and A equipped with the A∞ structure Φ∗A; formal
diffeomorphisms then form a group under composition of functors.

We now make use of [25, Lemma I.2.1]:

Lemma 16. Let A be a c-unital A∞ category. Then there exists a formal diffeomorphism Φ
with Φ1 = Id, such that the modified A∞ structure Φ∗A is strictly unital. Moreover, Φ sends
the chosen c-units of A to the strict units of Φ∗A.

Equivalently, given a c-unital A∞ category A, there is a strictly unital A∞ category B (with
the same underlying graded linear category as A) and a formal diffeomorphism Φ : B → A. Since
B is strictly unital, it admits a canonical homotopy unit B → B′. The underlying graded linear
category of a homotopy unit for A is the same as that for B; thus we define the graded linear
category A′ := B′. The point is that Φ extends to a formal diffeomorphism Φ : B′ → A′ such
that the induced A∞ structure on A′ makes the canonical inclusion A → A′ into a homotopy
unit for A′.

Specifically, for any X ∈ Ob(A′) = Ob(B′) = Ob(A) = Ob(B), one writes

HomA′(X,X) = HomB′(X,X) = HomB(X,X)⊕ kfX [1]⊕ ke+
X (120)

and one writes e0
B,X ∈ HomB(X,X) for the strict unit and e0

A,X ∈ HomA(X,X) for the chosen
c-units of A. One then defines Φ : B′ → A′ by the conditions that

Φ(e+
X) = e+

X ,

Φ(fX) = fX ,

Φ(. . . , fX , . . .) = 0 whenever there is more than one term, and

Φ(. . . , e+
X , . . .) = 0,meaning that Φ is strictly unital.

(121)

This is a formal diffeomorphism, so there is a unique A∞ structure µA′ satisfying the equations∑
r

∑
s1,...,sr

µrA′(Φ
sr (bd, . . . , bd−sr+1), . . . ,Φs1(bs1 , . . . , b1)) =

∑
m,n

(−1)∗Φd−m+1(bd, . . . , bn+m+1, µ
m
B′(bn+m, . . . , bn+1), bn, . . . b1).

(122)
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Since Φ extends a diffeomorphism from B to A, the uniqueness of the solutions to the above
equations implies that µA′ |A = µA. Specializing the above equations we see that

µ1
A′(fX) = µ1

A′(Φ
1(fX)) = Φ1(µ1

B′(fX)) = Φ1(e0
B,X − e+

X) = e0
A,X − e+

X . (123)

So it remains to show that e+ is a strict unit for µA′ . The condition µ1
A′(e

+
X) trivially follows

from (122). Likewise, (122) implies that

µ2
A′(e

+
X ,Φ

1(a)) = µ2
A′(Φ

1(e+
X),Φ1(a)) =

−µ1
A′(Φ

2(e+
X , a)) + Φ1(µ2

B′(e
+
X , a)) + Φ2(µ1

B′(e
+
X), a) + Φ2(e+

X , µ
1
B′(a)),

(124)

where all the second line all terms are zero except for the second term. Writing |a| for the degree
of a the above computation together with a similar computation of µ2

A′(Φ
1(a), e+

X) show that

µ2
A′(e

+
X , a) = a = (−1)|a|µ2

A′(a, e
+
X) (125)

where the sign comes from the suppressed Koszul signs in (122).
Thus it remains to show that µkA′(. . . , e

+
X , . . .) = 0 for k ≥ 3. This is proven by induction on

k. Consider applying 122 to a tuple (bk, . . . , b
′, e+

X , b
′′, . . . , b1). In the left hand side of 122 by

the inductive hypothesis and the properties of Φ (121), all terms vanish except for

µkA′(Φ
1(bk), . . . ,Φ1(e+), . . . ,Φ1(b1)). (126)

On the right hand side, by the inductive hypothesis and the properties of Φ, one sees that the
only non-zero terms are

(−1)∗Φk−1(. . . , µ2
B′(b

′, e+), b′′, . . .) + (−1)∗Φk−1(. . . , b′, µ2
B′(e

+, b′′)). (127)

Computing the suppressed Koszul signs one sees that this sum cancels, and thus the quantity
in (126) is zero. One must give slightly different arguments if e+

X lies all the way to the left or
all the way to the right in the tuple plugged into (122). For example, if one applies (122) to
(e+
X , b

′′, . . .) (where there k entries in the tuple), the inductive hypothesis and the properties of
Φ show that all terms vanish except for

µkA′(Φ
1(e+

X),Φ1(b′), . . .) + µ2
A′(Φ

1(e+
X),Φk−1(b′′, . . .)) = (−1)∗Φk−1(µ2

B′(e
+
X , b

′′), . . .) (128)

on the left and right hand side, respectively. A computation of the suppressed Koszul sign shows
that two terms containing µ2 cancel, showing that µkA′e

+
X , . . .) = 0 for k > 3 (assuming the base

case k = 3). An analogous computation of (122) applied to (. . . , b′, e+
X) completes the inductive

step. Finally, the arguments for the inductive step also adapt to prove the base case k = 3 by
explicitly expanding (122) when applied to tuples (e+

X , b
′′, b), (b′, e+

X , b
′′) and (b, b′, e+

X). This
completes the proof.

6 Appendix: A∞ conventions

There are many different sign conventions for A∞-algebraic equations in the literature.
The convention in this paper is that the A∞ operations

µk : Hom(L0, L1)⊗Hom(L1, L2)⊗ . . .⊗Hom(Lk−1, Lk)→ Hom(L0, Lk)

must satisfy the A∞ equations∑
i+j+k=n+1

(−1)|a1|+...+|ai|+iµi+k+1(a1, . . . , ai, µj(ai+1, . . . ai+j), ai+j+1, . . . , an) = 0 (129)
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These agree with the conventions of Efimov [10], Seidel [24], and [26], but disagree with those
of [25] and [16]. To convert from one convention to the other, one simply reverses the order of
the inputs into the µk operations.

Relatedly, there are two different conventions for opposite A∞ categories: the one given in
Definition 4, and one used in [25] and in [16]. They only differ by signs in the A∞ operations,
so over a field of characteristic 2 they agree. A discussion of these differences can be found in
[26].

References

[1] Mohammed Abouzaid. A geometric criterion for generating the fukaya category. Publica-
tions Mathématiques de l’IHÉS, 112:191–240, 2010.

[2] Mohammed Abouzaid and Paul Seidel. An open string analogue of viterbo functoriality.
Geom. Topol., 14(2):627–718, 2010.

[3] Peter Albers, Kai Cieliebak, and Urs Frauenfelder. Symplectic tate homology. Proceedings
of the London Mathematical Society, 112(1):169–205, January 2016.

[4] Denis Auroux. A beginner’s introduction to fukaya categories, 2013.

[5] Frédéric Bourgeois and Alexandru Oancea. Symplectic homology, autonomous hamiltoni-
ans, and morse-bott moduli spaces. Duke Math. J., 146(1):71–174, 01 2009.

[6] Frédéric Bourgeois and Alexandru Oancea. s1-equivariant symplectic homology and lin-
earized contact homology, 2012.

[7] Baptiste Chantraine, Georgios Dimitroglou Rizell, Paolo Ghiggini, and Roman Golovko.
Geometric generation of the wrapped fukaya category of weinstein manifolds and sectors,
2017.
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H ×H

∆

H −H

M ×M−

M

M

chK1⊗ δ

Figure 1: A summary of the proof of Theorem 3. Each piece of the initial moduli space corre-
sponds to a morphism in the statement of the conjecture, as labeled. By passing from curves in
M ×M− to curves in M , one can then pull apart the piece of the moduli space consisting with
curves without marked points, showing that the image of K ◦ ch factors through the “constant
loops” in symplectic cohomology, and is thus annihilated by the Connes map. (Technically,
we do not ‘pull apart” the last moduli space, because an action argument suffices.) To get a
formally dual proof of Theorem 2 (not detailed in this paper) one reads the second diagram
from left-to-right rather than right-to-left; the moduli space corresponding to the right cylinder,
with H chosen to be a small Morse function, gives a pairing on HF (H) that pulls back to
Shklyarov pairing on Hochschild homology of compact Lagrangians under the open closed map.
The bordism in the third diagram shows that the Shklyarov pairing annihilates the image of
1⊗ δ.
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A

B C

D E

F

Figure 2: The moduli space giving rise to R(x) and the relation between R(x) and φ(x). The
moduli space is depicted in the center; its degenerations follow the arrows, with an increase in
virtual codimension for every arrow. The boundary components of 1-dimensional moduli spaces
of this type can only be either contributions to φ(x) (C) or contirbutions to dR(x) (B); the
other possible degenerations do not contribute becasuse their real codimension is greater than
1. This moduli space is different from the moduli space giving rise to the Cardy relation [1]
because in this moduli space, there is no constraint on the relative angle between a0 and b0, so
the degeneration from A to E is codimension 2. In these degenerations, boundary disk bubbles
interior sphere bubbles are excluded by exactness.

(H1, H1)

∆

∆

Figure 3: The moduli space defining K(OC(ch(∆)).
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∆

H1 H1

Figure 4: An alternative description of K(OC(ch(∆)), see Lemma 12.

H = 0

H1 −H1

Figure 5: The moduli space we get after performing a bordism to the gluing of 3. From a
TQFT perspective, one should imagine “stretching” the region where H = 0 until the domains
degenerate into a union of two disks joined at an interior point; we replace this additional
bordism of moduli spaces with an action argument, for convenience.

−Hθ
1 = −H1

θ−H1
p q

Figure 6: A symmetry of the moduli space arising after applying 1⊗ δk to K(OC(ch(∆))). We
have drawn the moduli space as if it is a curve mapping to M , rather than to M−. See Lemma
14.
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